精英家教网 > 高中数学 > 题目详情
如图,在等边△ABC中,P是边AC上一点,连接BP,将△BCP绕点B逆时针旋转60°,得到△BAQ,连接PQ.若BC=8,BP=7,则△APQ的周长是    
15

试题分析:根据题意可知,在△APQ中,,又因为BP=7,,所以为正三角形,所以,所以该三角形的周长为15.
点评:对于此类问题,要充分发挥空间想象能力,抓住折叠、旋转过程中的变量和不变量.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,圆的割线交圆两点,割线经过圆心.已知.则圆的半径    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲选做题)如图,AB、CD是圆的两条弦,
且AB是线段CD的中垂线,已知AB=6,CD=,则线段AC的长度为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角三角形的顶点坐标,直角顶点,顶点轴上,点为线段的中点

(Ⅰ)求边所在直线方程;
(Ⅱ)为直角三角形外接圆的圆心,求圆的方程;
(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.

(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4—1:几何证明选讲
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且

(1)求证:A、P、D、F四点共圆;
(2)若AE·ED=24,DE=EB=4,求PA的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在轴的正半轴上,O为坐标原点.现将正方形OABC绕O点按顺时针方向旋转.
 (1)当点A第一次落到轴正半轴上时,求边BC在旋转过程中所扫过的面积;
 (2)若线段AB与轴的交点为M(如图2),线段BC与直线的交点为N.设的周长为,在正方形OABC旋转的过程中值是否有改变?并说明你的结论;
(3)设旋转角为,当为何值时,的面积最小?求出这个最小值, 并求出此时△BMN的内切圆半径.

      

查看答案和解析>>

同步练习册答案