分析 (1)根据三角形的面积公式和余弦定理即可求出,
(2)根据正弦定理和二倍角公式和同角的三角函数的关系,以及两角差的正弦公式即可求出.
解答 解:(1)∵△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,
∴$\frac{1}{2}bcsinA=\frac{{3\sqrt{3}}}{2}$,
∴c=3
由余弦定理a2=b2+c2-2bccosA
∴$a=\sqrt{7}$
(2)由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$
∴$sinB=\frac{bsinA}{a}=\frac{{\sqrt{21}}}{7}$
∵a>b,∴$0<B<\frac{π}{2}$,
∴$cosB=\sqrt{1-{{sin}^2}B}=\frac{{2\sqrt{7}}}{7}$,
∴$sin2B=2sinBcosB=\frac{{4\sqrt{3}}}{7}$,$cos2B={cos^2}B-{sin^2}B=\frac{1}{7}$,
∴$sin({2B-\frac{π}{6}})$=$sin2Bcos\frac{π}{6}-cos2Bsin\frac{π}{6}$=$\frac{{4\sqrt{3}}}{7}×\frac{{\sqrt{3}}}{2}-\frac{1}{7}×\frac{1}{2}=\frac{11}{14}$.
点评 本题主要考查了三角形的面积公式及正弦定理余弦定理在求解三角形中的应用以及三角函数的化简和求值,解题的关键是公式的熟练应用,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{32}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com