分析 由sin(A+B)=1,得A+B=$\frac{π}{2}$,可求2A+2B=π,利用诱导公式,同角三角函数基本关系式化简所求即可得解.
解答 解:由sin(A+B)=1,得A+B=$\frac{π}{2}$,
可得:2A+2B=π.
于是sin(3A+2B)
=sin(A+π)
=-sinA
=-$\sqrt{1-(\frac{1}{3})^{2}}$
=-$\frac{2\sqrt{2}}{3}$.
答案:-$\frac{2\sqrt{2}}{3}$.
点评 本题主要考查了正弦函数的图象和性质,诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想和数形结合思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | lnkx | B. | ln(x+k) | C. | ln$\frac{k}{x}$ | D. | ln$\frac{x+k}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7,8) | B. | (8,9) | C. | (9,11) | D. | (12,17) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com