精英家教网 > 高中数学 > 题目详情
在展开式(3a+b)22中,a和b有相同指数的项是第
 
项.
考点:二项式系数的性质
专题:二项式定理
分析:在展开式(3a+b)22 的通项公式中,令a、b的指数相等,求得r的值,可得a和b有相同指数的项是第几项.
解答: 解:展开式(3a+b)22 的通项公式为Tr+1=
C
r
22
•(3a)22-r•br
令22-r=r,求得 r=11,
故a和b有相同指数的项是第12项,
故答案为:12.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+3x|x-a|,其中a∈R
(1)当a=
1
3
时,方程f(x)=b恰有三个根,求实数b的取值范围;
(2)当a=
1
3
时,是否存在区间[m,n],使得函数的定义域与值域均为[m,n],若存在,请求出所有可能的区间[m,n],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=2r•an+r(n∈N+,r∈R且r≠0),若数列成等差数列,则r为
 
;若数列成等比数列,则r为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y-3)2=9和圆C2:(x-4)2+(y-3)2=9.
(1)若直线l过点A(-5,1),且被圆C1截得的弦长为2
5
,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<3},B={x|x<a},若A=B,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b>0且满足ab=a+9b+7,则ab的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆C1:x2+y2-6x=0与圆C2:x2+y2=4的交点,圆心在以
c
=(0,1)为方向向量且与圆C2:x2+y2=4相切的直线上的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、“p∨q为真”是“p∧q为真”的充分不必要条件
B、设有一个回归直线方程为
?
y
=2-1.5x
,则变量x每增加一个单位,
?
y
平均减少1.5个单位
C、若a,b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
4
D、已知空间直线a,b,c,若a⊥b,b⊥c,则a∥c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)=Asin(2x+φ)+b(A>0,0<φ<π)的最大值是3,最小值为-1
(1)求A、b、φ的值;
(2)求函数y=f(x+
π
4
)的单调递增区间.

查看答案和解析>>

同步练习册答案