精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=sin(ωx+φ)+1(ω>0,0≤φ≤$\frac{π}{2}$)的图象相邻两条对称轴之间的距离为π,且在x=$\frac{π}{3}$时取得最大值2,若f(α)=$\frac{8}{5}$,且$\frac{π}{3}$<α<$\frac{5π}{6}$,则sin(2α+$\frac{π}{3}$)的值为(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

分析 由题意,相邻两条对称轴之间的距离为π,可得周期T=2π,求出ω,在x=$\frac{π}{3}$时取得最大值2,求出φ,利用f(α)=$\frac{8}{5}$,且$\frac{π}{3}$<α<$\frac{5π}{6}$,构造出sin(2α+$\frac{π}{3}$),根据和与差公式计算即可.

解答 解:函数f(x)=sin(ωx+φ)+1(ω>0,0≤φ≤$\frac{π}{2}$),
∵相邻两条对称轴之间的距离为π,
∴周期T=2π,即$\frac{2π}{ω}$=2π,
∴ω=1.
那么f(x)=sin(x+φ)+1,
又∵x=$\frac{π}{3}$时取得最大值2,即sin($\frac{π}{3}$+φ)+1=2,
可得:$\frac{π}{3}$+φ=$\frac{π}{2}+2kπ$,k∈Z,
0≤φ≤$\frac{π}{2}$
∴φ=$\frac{π}{6}$.
则f(x)=sin(x+$\frac{π}{6}$)+1,
由f(α)=$\frac{8}{5}$,即sin(α+$\frac{π}{6}$)=$\frac{3}{5}$
且$\frac{π}{3}$<α<$\frac{5π}{6}$,
则α+$\frac{π}{6}$∈($\frac{π}{2}$,π)
∴cos(α+$\frac{π}{6}$)=$-\frac{4}{5}$
那么:sin(2α+$\frac{π}{3}$)=sin2(α+$\frac{π}{6}$)=2sin(α+$\frac{π}{6}$)cos(α+$\frac{π}{6}$)=-2×$\frac{4}{5}$×$\frac{3}{5}$=$-\frac{24}{25}$.
故选D.

点评 本题给出正弦型三角函数的解析式求法,以及化简计算能力,利用了二倍角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.二项式${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^{12}}$展开式中,x3的系数是(  )
A.-495B.-220C.495D.220

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若数列{an}满足a1=1,an+1=nan+1,则第5项a5=(  )
A.5B.65C.89D.206

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且atanC=2csinA.
(I) 求角C的大小;
(II) 求sinA+sinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=(  )
A.1B.2C.$\sqrt{13}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,内角A、B、C所对的边分别为a、b、c,若sin($\frac{3}{2}$B+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,且a+c=2,则△ABC的周长的取值范围是[3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m、n为空间两条不同直线,α、β、γ为不同的平面,则下列命题正确的是(  )
A.若α⊥β,a?α,则a⊥βB.若α⊥γ,β⊥γ,则α∥β
C.若α∥β,a?α,b?β,则a∥bD.若m⊥α,m∥n,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)-g(x)极值点的情况是(  )
A.只有三个极大值点,无极小值点B.有两个极大值点,一个极小值点
C.有一个极大值点,两个极小值点D.无极大值点,只有三个极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a<b<0,那么下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ab<b2C.ac2<bc2D.|a|>|b|

查看答案和解析>>

同步练习册答案