精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=(  )
A.1B.2C.$\sqrt{13}$D.$\sqrt{19}$

分析 根据题意,由抛物线的标准方程可得其焦点坐标,再结合双曲线的几何性质可得a2+b2=c2=4,计算可得a2的值,化简即可得答案.

解答 解:根据题意,抛物线的方程为y2=8x,其焦点在x轴正半轴上,且p=4,
则其焦点坐标为(2,0),
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点为(2,0),即c=2,
则有a2+b2=c2=4,
又由b2=3,
则a2=c2-b2=1,
又由a>0,即a=1,
故选:A.

点评 本题考查双曲线、抛物线的几何性质,关键是由抛物线的标准方程,求出抛物线的焦点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2017项为a2017,则a2017-5=(  )
A.2023×2017B.2023×2016C.1008×2023D.2017×1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图.当输入x=ln$\frac{1}{2}$时,输出的y值为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA丄底面ABCD,PA=AC.过点A的平面与棱PB,PC,PD分别交于点E,F,G(E,F,G三点均不在棱的端点处).
(I)求证:平面PAB丄平面PBC
(Ⅱ)若PC丄平面AEFG,求$\frac{PF}{PC}$的值;
(Ⅲ)直线AE是否可能与平面PCD平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)+1(ω>0,0≤φ≤$\frac{π}{2}$)的图象相邻两条对称轴之间的距离为π,且在x=$\frac{π}{3}$时取得最大值2,若f(α)=$\frac{8}{5}$,且$\frac{π}{3}$<α<$\frac{5π}{6}$,则sin(2α+$\frac{π}{3}$)的值为(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,M是AB上的动点,CB=CA=CC1=2.
(Ⅰ)若点M是AB中点,证明:平面MCC1⊥平面ABB1A1
(Ⅱ)判断点M到平面A1B1C的距离是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.给定椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0).设t>0,过点T(0,t)斜率为k的 直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)用a,b,k,t表示△OMN的面积S,并说明k,t应满足的条件;
(Ⅱ)当k变化时,求S的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6.
(Ⅰ)请将下面的列联表补充完整:
 喜欢外卖不喜欢外卖合计
90后20
5
25
80后101525
合计302050
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;
(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.
下面的临界值表供参考:
 P(K2≥k00.15 0.10  0.050.025 0.010 0.005 0.001 
 k02.072  2.7063.841  5.0246.635 7.879 10.828 
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案