精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A,B,C的对边分别为a,b,c,且atanC=2csinA.
(I) 求角C的大小;
(II) 求sinA+sinB的最大值.

分析 (I)根据正弦定理和商的关系化简已知的式子,由内角的范围和特殊角的三角函数值求出C的值.
(II)利用三角函数恒等变换的应用化简可得sinA+sinB=$\sqrt{3}$sin(A+$\frac{π}{6}$),由范围$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,利用正弦函数的图象和性质可求最大值.

解答 解:(I)∵2csinA=atanC,
∴由正弦定理得,2sinCsinA=sinAtanC,
则2sinCsinA=sinA•$\frac{sinC}{cosC}$,
由sinCsinA≠0得,cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$.
(II)则A+B=$\frac{2π}{3}$,
∴B=$\frac{2π}{3}$-A,0<A<$\frac{2π}{3}$,
∴sinA+sinB=sinA+sin($\frac{2π}{3}$-A)=sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{2π}{3}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴当A+$\frac{π}{6}$=$\frac{π}{2}$时,sinA+sinB取得最大值$\sqrt{3}$,

点评 本题考查了正弦定理,正弦函数的图象和性质,三角函数恒等变换的应用,求出C的大小是解决本题的关键,考查了转化思想和数形结合思想,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系xOy中,已知成$\overrightarrow{OA}$=(-1,t),$\overrightarrow{OB}$=(2,2),若∠ABO=90°,则实数t的值为(  )
A.1B.-3C.$\frac{1}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知如下等式:
2+4=6;
8+10+12=14+16;
18=20+22+24=26+28+30;

以此类推,则2018出现在第31个等式中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集 U={1,2,3,4,5,6},集合A={1,3,5},B={1,4},那么 A∩∁UB=(  )
A.{3,5}B.{2,4,6}C.{1,2,4,6}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图.当输入x=ln$\frac{1}{2}$时,输出的y值为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合A={1,2,3,4},B={x|x2-x-6≤0},则A∩B=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)+1(ω>0,0≤φ≤$\frac{π}{2}$)的图象相邻两条对称轴之间的距离为π,且在x=$\frac{π}{3}$时取得最大值2,若f(α)=$\frac{8}{5}$,且$\frac{π}{3}$<α<$\frac{5π}{6}$,则sin(2α+$\frac{π}{3}$)的值为(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设Sn是数列{an}的前n项和,已知S2=3,且an+1=Sn+1,n∈N*,则a1=1;Sn=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知O是坐标原点,点P(2,1),若M(x,y)满足约束条件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且$\overrightarrow{OP}•\overrightarrow{OM}$的最大值为10,则实数a的值是(  )
A.-3B.-10C.4D.10

查看答案和解析>>

同步练习册答案