精英家教网 > 高中数学 > 题目详情
12.已知圆O1:x2+(y+1)2=4,圆O2的圆心坐标为(3,3),且两圆相外切,求:
(1)圆O2的标准方程;
(2)两圆内公切线的一般方程.

分析 (1)通过圆心距对于半径和,求出圆的半径,即可求出圆的方程.
(2)两圆方程相减可得两圆内公切线的一般方程.

解答 解:(1)圆O1的方程为x2+(y+1)2=4,圆心坐标(0,-1),半径为:2,
圆O2的圆心O2(2,1).
圆心距为:$\sqrt{(2-0)^{2}+(1+1)^{2}}$=2$\sqrt{2}$,圆O2与圆O1外切,
所求圆的半径为:2$\sqrt{2}$-2,
圆O2的方程(x-2)2+(y-1)2=12-8$\sqrt{2}$;
(2)两圆方程相减可得两圆内公切线的一般方程x+y+1-2$\sqrt{2}$=0.

点评 本题考查两个圆的位置关系,圆的方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ为实数且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,则λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数f(x)的图象过点$({2,\sqrt{2}})$,则$f({\frac{1}{2}})$=(  )
A.$\sqrt{2}$B.4C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{x^2}+a}}{x}$(常数a∈R).
(1)判断函数f(x)的奇偶性,并证明;
(2)若f(1)=2,证明函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的单调递减区间   
(2)求f(x)在$x∈[0,\frac{π}{2}]$时的值域
(3)叙述由$y=\sqrt{2}sinx$到y=f(x)的图象的变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+cos2x.
(1)求周期,
(2)若将f(x)的图象向右平移φ个单位,所得图象关于y轴对称,求φ的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=log94,b=log64,c=$\frac{1}{2}$,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将函数 y=cos(2x+$\frac{3π}{2}$)的图象向左平移 $\frac{π}{4}$个单位长度,再向上平移 1个单位长度后,所得图象的函数解析式是y=cos2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集I=R,
集合A={a|二次方程ax2-x+1=0有实根},
集合B={a|二次方程x2-ax+1=0有实根},求(∁IA)∪B.

查看答案和解析>>

同步练习册答案