精英家教网 > 高中数学 > 题目详情
1.将函数 y=cos(2x+$\frac{3π}{2}$)的图象向左平移 $\frac{π}{4}$个单位长度,再向上平移 1个单位长度后,所得图象的函数解析式是y=cos2x+1.

分析 由三角函数图象变换规律,诱导公式即可解得函数解析式.

解答 解:∵y=cos(2x+$\frac{3π}{2}$)=sin2x,
∴将函数y=sin2x的图象向左平移$\frac{π}{4}$个单位长度得到y=sin[2(x+$\frac{π}{4}$)]=cos2x的图象,
再向上平移1个单位长度得到y=cos2x+1的图象.
故答案为:y=cos2x+1.

点评 本题考查三角函数图象变换及诱导公式的应用,考查了转化思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,动点P从边长为1的正方形ABCD的顶点A出发,顺次经过顶点B,C,D再回到A.设x表示P点的路程,y表示PA的长度,求y关于x的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆O1:x2+(y+1)2=4,圆O2的圆心坐标为(3,3),且两圆相外切,求:
(1)圆O2的标准方程;
(2)两圆内公切线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①sin(α+$\frac{π}{2}$)+cos(π-α)=0,
②函数f(x)=log3(x2-2x)的单调递减区间为(-∞,1);
③已知P:|2x-3|>1,q:$\frac{1}{{{x^2}+x-6}}$>0,则P是q的必要不充分条件;
④在平面内,与两圆x2+y2=1及x2+y2-8x+12=0都外切的动圆圆心的轨迹是双曲线.
其中所有正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{{\begin{array}{l}{{x^3},0≤x<5}\\{f({x-5}),x≥5}\end{array}}$,那么f(2013)=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-alnx(a∈R).
(I)若f(x)在[1,3]上是单调递增函数,求实数a的取值范围;
(II)记g(x)=f(x)+(2+a)lnx-2(b-1)x,并设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥1+$\frac{3}{2}\sqrt{2}$,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,则f(2014)+f(2015)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若“m>a”是“函数f(x)=($\frac{1}{3}$)x+m-$\frac{1}{3}$的图象不过第三象限”的必要不充分条件,则实数a能取的最大整数为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC的内角A,B,C的对边分别为a,b,c,asinA+csinC=$\sqrt{2}$asinC+bsinB.
(1)求B;
(2)若A=$\frac{5π}{12}$,b=2,求a和c.

查看答案和解析>>

同步练习册答案