精英家教网 > 高中数学 > 题目详情
13.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,则f(2014)+f(2015)=(  )
A.0B.1C.2D.3

分析 利用函数f(x)是周期为4的奇函数,可得f(2014)+f(2015)=f(2)+f(-1)=f(2)-f(1),再利用分段函数的解析式即可得出.

解答 解:函数f(x)在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{lo{g}_{2}x+1,1<x≤2}\end{array}\right.$,
∴f(2)=log22+1=2,f(1)=1.
∵函数f(x)是周期为4的奇函数,
∴f(2014)+f(2015)=f(503×4+2)+f(504×4-1)
=f(2)+f(-1)=f(2)-f(1)=2-1=1.
故选:B.

点评 本题考查了分段函数的性质、函数的周期性与奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.幂函数f(x)的图象过点$({2,\sqrt{2}})$,则$f({\frac{1}{2}})$=(  )
A.$\sqrt{2}$B.4C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=log94,b=log64,c=$\frac{1}{2}$,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将函数 y=cos(2x+$\frac{3π}{2}$)的图象向左平移 $\frac{π}{4}$个单位长度,再向上平移 1个单位长度后,所得图象的函数解析式是y=cos2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=1,nan+1=(n+1)an+n2+n(n∈N*).
(1)求证:数列{$\frac{{a}_{n}}{n}$}为等差数列;
(2)若数列{bn}满足bn=$\frac{2n+1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2$\sqrt{3}$sin(π+x) cos(-3π-x)-2sin($\frac{π}{2}$-x)cos(π-x).
(1)求函数f(x)的单调递增区间;
(2)若f($\frac{α}{2}$-$\frac{π}{12}$)=$\frac{3}{2}$,α是第二象限角,求cos(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={1,2,3},B={x|-1<x≤2,x∈N},则A∪B={0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集I=R,
集合A={a|二次方程ax2-x+1=0有实根},
集合B={a|二次方程x2-ax+1=0有实根},求(∁IA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=lnsin(x+1)的复合过程为y=lnt,t=sinu,u=x+1.

查看答案和解析>>

同步练习册答案