| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
分析 先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.
解答 解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,
例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;
或者是m,n都是负数,曲线表示的也不是椭圆;
故前者不是后者的充分条件;
当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;
由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.
故选B.
点评 本题主要考查充分必要条件,考查椭圆的方程,注意对于椭圆的方程中,系数要满足大于0且不相等,本题是一个基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | (-1,2) | C. | (1,3) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “am2<bm2”是“a<b”的充分不必要条件 | |
| B. | 命题“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,x3-x2-1>0” | |
| C. | 若p,q均为假命题,则p∧q为假命题 | |
| D. | 若a>b,则a2>b2. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com