精英家教网 > 高中数学 > 题目详情
6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),对于任意实数k,下列直线被椭圆所截弦长与直线y=kx+1被截得的弦长不可能相等是(  )
A.kx+y+k=0B.kx-y-1=0C.kx+y-k=0D.kx+y-2=0

分析 对于A,k=-1时,直线l和直线kx+y+k=0关于x轴对称,则此时它们所截的弦长相等,故不能选 A.
对于B,直线l和直线kx-y-1=0平行且它们所截得的弦长相等,
对于C,k=-1时,直线l和直线kx+y-k=0关于y轴对称,则此时它们所截的弦长相等,
对于D:直线kx+y-2=0的斜率为-k,在y轴上的截距为2,这两直线不关于x轴、y轴、原点对称,故被椭圆E所截得的弦长不可能相等.

解答 解:对于A,k=-1时,直线l和直线kx+y+k=0关于x轴对称,则此时它们所截的弦长相等,则A选项错误;
对于B,直线l和直线kx-y-1=0平行且它们所截得的弦长相等,则B选项错误;
对于C,k=-1时,直线l和直线kx+y-k=0关于y轴对称,则此时它们所截的弦长相等,则C选项错误;
对于D:直线l斜率为k,在y轴上的截距为1,直线kx+y-2=0的斜率为-k,在y轴上的截距为2,这两直线不关于x轴、y轴、原点对称,
故被椭圆E所截得的弦长不可能相等.
故选:D.

点评 本题考查直线和椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,两条渐近线分别为l1,l2,经过右焦点F2垂直于l1的直线分别交l1,l2于A,B两点,若|OA|+|OB|=2|AB|,且F2在线段AB上,则双曲线的渐近线斜率为(  )
A.$±\frac{{\sqrt{5}}}{2}$B.±2C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=|lgx|-cosx在(-∞,+∞)内的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=lnx+$\frac{1}{2}$x2+ax(a∈R),g(x)=ex+$\frac{3}{2}$x2
(1)讨论f(x)的极值点的个数;
(2)若对于?x>0,总有f(x)≤g(x),求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=x(ex-1)-$\frac{1}{2}$x2的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.简单随机抽样是逐个不放回的抽样,则某一个个体被抽中的可能性(  )
A.与第几次抽样无关,每次抽中的可能性相等
B.与第几次抽样无关,第一次抽中的可能性要大些
C.与第几次抽样有关,最后一次抽中的可能性大些
D.与第几次抽样有关,虽然每次都是等可能的抽取,但各次抽取的可能性不一样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若满足条件C=60°,AB=$\sqrt{3}$的△ABC有两个,那么BC的取值范围是(  )
A.$(1,\sqrt{2})$B.(1,2)C.$(\sqrt{2},\sqrt{3})$D.$(\sqrt{3},2)$

查看答案和解析>>

同步练习册答案