精英家教网 > 高中数学 > 题目详情
17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

分析 (1)由题意利用同角三角函数的基本关系,求得要求式子的值.
(2)利用任意角的三角函数的定义、诱导公式,求得要求式子的值.

解答 解:(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5=$\frac{tanα+3}{3-tanα}$,∴tanα=2,
∴sin2α-sinαcosα=$\frac{{sin}^{2}α-sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-tanα}{{tan}^{2}α+1}$=$\frac{2}{5}$.
(2)∵已知角α终边上一点P(-4,3),
∴tanα=-$\frac{3}{4}$,∴$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$=$\frac{-sinα•sinα}{-sinα•cosα}$=tanα=-$\frac{3}{4}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若圆台的上、下底面半径的比为3:5,则它的中截面分圆台上下两部分面积之比为(  )
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于大于或等于2的自然数,有如下分解式:
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根据上述分解规律,若n2=1+3+5+…+19,m3的分解中最小的数是43,则m+n=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一质点直线运动的方程为s=t2+1,则在时间[1,2]内的平均速度为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α是第二象限角,sin α=$\frac{5}{13}$,则tan α=(  )
A.-$\frac{5}{12}$B.$\frac{5}{12}$C.-$\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC;
(II)求证:平面PBC⊥平面PAM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.比大小:$tan(-\frac{13π}{7})$>$tan(-\frac{15π}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),对于任意实数k,下列直线被椭圆所截弦长与直线y=kx+1被截得的弦长不可能相等是(  )
A.kx+y+k=0B.kx-y-1=0C.kx+y-k=0D.kx+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用二分法来求方程x2-2=0得到的程序为(  )
A.组织结构图B.工序流程图C.知识结构图D.程序流程图

查看答案和解析>>

同步练习册答案