精英家教网 > 高中数学 > 题目详情
2.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC;
(II)求证:平面PBC⊥平面PAM.

分析 ( I)由M、N分别为BC,AB中点,可得MN∥AC.即可证明MN∥平面PAC.
( II)只需证明PA⊥BC.MN⊥BC,即可证明BC⊥平面PAM.即平面PBC⊥平面PAM.

解答 证明:( I)因为M、N分别为BC,AB中点,
所以MN∥AC.
因为MN?平面PAC,AC?平面PAC,
所以MN∥平面PAC.
( II)因为PA⊥平面ABC,BC?平面ABC,
所以PA⊥BC.
因为AB=AC=2,M为BC的中点,
所以MN⊥BC.
因为AM∩PA=A,
所以BC⊥平面PAM.
因为BC?平面PBC,
所以平面PBC⊥平面PAM.

点评 本题考查了空间线面平行、面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知球的直径PC=4,A,B在球面上,AB=2,∠CPA=∠CPB=45°,则棱锥P-ABC的体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个/毫升:
(1)试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;
(2)若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?(精确到0.1小时).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α=-300°,则与α终边相同的角的集合为(  )
A.{α|α=k•360°+300°,k∈Z}B.{α|α=k•360°+60°,k∈Z}
C.{α|α=k•360°+30°,k∈Z}D.{α|α=k•360°-60°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,周期为$\frac{π}{2}$的偶函数为(  )
A.y=sin4xB.y=cos2xC.y=tan2xD.$y=sin(\frac{π}{2}-4x)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=|lgx|-cosx在(-∞,+∞)内的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=x(ex-1)-$\frac{1}{2}$x2的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=e-x(cos x+sin x),则f′(x)=-2e-xsinx.

查看答案和解析>>

同步练习册答案