精英家教网 > 高中数学 > 题目详情
13.有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个/毫升:
(1)试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;
(2)若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?(精确到0.1小时).

分析 (1)求出最初的细菌个数,列出函数解析式即可;(2)根据题意得到关于x的不等式,解出即可.

解答 解:(1)某种饮料200毫升,其中细菌A的浓度为20个/毫升:
故200毫升饮料有细菌A4000个,
故细菌A的个数y=4000•2x,x>0;
(2)由(1)得:
4000×2x>90000,
解得:x>4.49,
即4.5小时后该饮料将对人体有害.

点评 本题考查了求函数解析式问题,考查不等式的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的一个焦点F1($\sqrt{3}$,0),短轴的长为2,双曲线D以椭圆C的焦点为焦点,实轴长与椭圆C的短轴长相等.
(1)求椭圆C的方程;
(2)求双曲线D的方程;
(3)求椭圆C与双曲线D相交所得的矩形面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正四棱锥P-ABCD的底面边长为$\sqrt{2}$,体积为$\frac{4}{3}$,则此棱锥的内切球与外接球的半径之比为(  )
A.1:2B.2:5C.1:3D.4:5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.给出30个数:1,2,4,7,…其规律是:第一个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),
(1)请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能;
(2)根据程序框图写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于大于或等于2的自然数,有如下分解式:
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根据上述分解规律,若n2=1+3+5+…+19,m3的分解中最小的数是43,则m+n=17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\frac{x}{1+x},x≥0$,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,归纳猜想f2018(x)的表达式为f2018(x)=$\frac{x}{1+2018x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一质点直线运动的方程为s=t2+1,则在时间[1,2]内的平均速度为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC;
(II)求证:平面PBC⊥平面PAM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,左右焦点分别为F1,F2,经过F2作一条斜率为-1的直线,与椭圆相交于A,B两点,且△ABF1的周长为8;
(1)求椭圆的方程;
(2)求线段AB的长.

查看答案和解析>>

同步练习册答案