精英家教网 > 高中数学 > 题目详情
7.下列函数中,周期为$\frac{π}{2}$的偶函数为(  )
A.y=sin4xB.y=cos2xC.y=tan2xD.$y=sin(\frac{π}{2}-4x)$

分析 利用周期公式分别求出各三角函数的周期,再利用三角函数的奇偶性判断即可得答案.

解答 解:对于A,y=sin4x,
∵ω=4,∴T=$\frac{2π}{ω}$=$\frac{π}{2}$.
由于正弦函数为奇函数,故A不正确;
对于B,y=cos2x,
∵ω=2,∴T=π.故B不正确;
对于C,y=tan2x,
∵ω=2,∴T=$\frac{π}{2}$.
由于正切函数为奇函数,故C不正确;
对于D,y=$sin(\frac{π}{2}-4x)$=cos4x,
∵ω=4,∴T=$\frac{2π}{ω}$=$\frac{π}{2}$.
由于余弦函数为偶函数,故D正确.
故选:D.

点评 本题考查了三角函数的周期性及其求法,以及正切函数的周期性与对称性,熟练掌握周期公式是解本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{a+lnx}{x}$在点(e,f(e))处切线与直线e2x-y+e=0垂直.(注:e为自然对数的底数)
(1)求a的值;
(2)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;
(3)求证:当x>1时,f(x)>$\frac{2}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\frac{x}{1+x},x≥0$,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,归纳猜想f2018(x)的表达式为f2018(x)=$\frac{x}{1+2018x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了解社区居民的家庭收入与年支出的关系,随机抽查5户家庭得如下数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.76$,$\widehata=\overline y-\widehatb\overline x$,据此估计,该社区一户收入20万元家庭的支出是(  )
A.15.6万元B.15.8万元C.16万元D.16.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC;
(II)求证:平面PBC⊥平面PAM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\frac{tan2x}{{\sqrt{x-{x^2}}}}$的定义域为$(0,\frac{π}{4})∪(\frac{π}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点P(a,-2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2),证明:x1x2+y1y2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f′(3)=4,则 $\underset{lim}{h→0}$$\frac{f(a-h)-f(a)}{2h}$为(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.比较大小:$\sqrt{3}+\sqrt{7}$<$2\sqrt{5}$;(填不等号)

查看答案和解析>>

同步练习册答案