| A. | 3:5 | B. | 9:25 | C. | 5:$\sqrt{41}$ | D. | 7:9 |
分析 中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,根据圆台的上、下底面半径的比为3:5,我们可以设,上底半径为3R,下底半径为5R,母线长为2L,求出上、下两部分侧面积,即可得到答案.点评:
解答 解:设上底半径为3R,下底半径为5R,母线长为2L,![]()
则中截面半径为4R,分成的两个圆台的母线长均为L,
则S上=π(4R+3R)L,
S下=π(4R+5R)L,
故分圆台上、下两部分侧面积的比为7:9.
故选:D,
点评 本题考查的知识点是圆台的侧面积,根据中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,结合题目已知,求出上下两部分的侧面积是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | 45 | 55 |
| 乙班 | 20 | 30 | 50 |
| 合计 | 30 | 75 | 105 |
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2) | C. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1 | D. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $±\frac{{\sqrt{5}}}{2}$ | B. | ±2 | C. | $±\sqrt{2}$ | D. | $±\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com