精英家教网 > 高中数学 > 题目详情
7.若圆台的上、下底面半径的比为3:5,则它的中截面分圆台上下两部分面积之比为(  )
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

分析 中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,根据圆台的上、下底面半径的比为3:5,我们可以设,上底半径为3R,下底半径为5R,母线长为2L,求出上、下两部分侧面积,即可得到答案.点评:

解答 解:设上底半径为3R,下底半径为5R,母线长为2L,
则中截面半径为4R,分成的两个圆台的母线长均为L,
则S=π(4R+3R)L,
S=π(4R+5R)L,
故分圆台上、下两部分侧面积的比为7:9.
故选:D,

点评 本题考查的知识点是圆台的侧面积,根据中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,结合题目已知,求出上下两部分的侧面积是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的坐标所适合的方程,并求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表:若按95%的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.
优秀非优秀总计
甲班104555
乙班203050
合计3075105
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一动圆M与圆M1:(x+1)2+y2=1外切,与圆M2:(x-1)2+y2=9内切,则动圆圆心M点的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2)C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对任意|m|≤2,不等式x2+mx+1>2x+m恒成立,则x的取值范围为(  )
A.x>3或x<-1B.x>3C.x<-1D.-1<x<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知球的直径PC=4,A,B在球面上,AB=2,∠CPA=∠CPB=45°,则棱锥P-ABC的体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(cos2x)=1-2sin2x,则f'(x)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,两条渐近线分别为l1,l2,经过右焦点F2垂直于l1的直线分别交l1,l2于A,B两点,若|OA|+|OB|=2|AB|,且F2在线段AB上,则双曲线的渐近线斜率为(  )
A.$±\frac{{\sqrt{5}}}{2}$B.±2C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

同步练习册答案