精英家教网 > 高中数学 > 题目详情
15.一动圆M与圆M1:(x+1)2+y2=1外切,与圆M2:(x-1)2+y2=9内切,则动圆圆心M点的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2)C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)

分析 首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程.

解答 解:设动圆的圆心为:M(x,y),半径为R,
动圆与圆M1:(x+1)2+y2=1外切,与圆M2:(x-1)2+y2=9内切,
∴|MM1|+|MM2|=1+R+3-R=4,
∵|MM1|+|MM2|>|M1M 2|,
因此该动圆是以原点为中心,焦点在x轴上的椭圆,2a=4,c=1
解得a=2,
根据a、b、c的关系求得b2=3,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)
故选:D.

点评 本题考查的知识点:椭圆的定义,椭圆的方程及圆与圆的位置关系,相关的运算问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的前n项积为Tn,若log2a3+log2a7=2,则T9的值为(  )
A.±512B.512C.±1024D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,角A,B,C所对的边分别是a,b,c,且点A(-1,0),B(1,0),动点C满足$\frac{a+b}{c}$=λ(λ为常数且λ>1),动点C的轨迹为曲线E.
(Ⅰ)试求曲线E的方程;
(Ⅱ)当λ=$\sqrt{3}$时,过定点B(1,0)的直线与曲线E交于P,Q两点,N是曲线E上不同于P,Q的动点,试求△NPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的一个焦点F1($\sqrt{3}$,0),短轴的长为2,双曲线D以椭圆C的焦点为焦点,实轴长与椭圆C的短轴长相等.
(1)求椭圆C的方程;
(2)求双曲线D的方程;
(3)求椭圆C与双曲线D相交所得的矩形面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知偶函数f(x)在[0,+∞)上是单调函数,且图象经过A(0,-1),B(3,1)两点,f(x)<1的解集为(-3,3) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=x2-2mx+2m+1,当x∈[0,1]时,f(x)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若圆台的上、下底面半径的比为3:5,则它的中截面分圆台上下两部分面积之比为(  )
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正四棱锥P-ABCD的底面边长为$\sqrt{2}$,体积为$\frac{4}{3}$,则此棱锥的内切球与外接球的半径之比为(  )
A.1:2B.2:5C.1:3D.4:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一质点直线运动的方程为s=t2+1,则在时间[1,2]内的平均速度为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案