精英家教网 > 高中数学 > 题目详情
4.已知等比数列{an}的前n项积为Tn,若log2a3+log2a7=2,则T9的值为(  )
A.±512B.512C.±1024D.1024

分析 利用已知条件求出a3a7的值,然后利用等比数列的性质求解T9的值.

解答 解:由log2a3+log2a7=2可得:log2(a3a7)=2,
可得:a3a7=4,则a5=2或a5=-2(舍去负值),
等比数列{an}的前9项积为T9=a1a2…a8a9=(a59=512.
故选:B.

点评 本题考查的等比数列的性质,数列的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求过点A(2,4)与圆x2+y2=4相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量)[80,85)[85,90)[90,95)[95,100)
频数(个)5102015
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知首项都是1的两个数列{an},{bn}$({{b_n}≠0,n∈{N^*}})$满足anbn+1-an+1bn-2an+1an=0.
(1)令${c_n}=\frac{b_n}{a_n}$,求证数列{cn}为等差数列;
(2)若${a_n}={3^{n-1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$,则$\frac{y}{x}$的取值范围为$[{-\frac{1}{8},\frac{5}{8}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等比数列{an}的前n项和为Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,则数列{$\frac{1}{{a}_{n}}$}的前4项和为(  )
A.$\frac{5}{16}$或$\frac{11}{16}$B.$\frac{5}{16}$或$\frac{7}{16}$C.$\frac{5}{16}$或$\frac{15}{16}$D.$\frac{3}{16}$或$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的坐标所适合的方程,并求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=|{x-\frac{5}{2}}|+|{x-a}|$,x∈R.
(Ⅰ)当$a=-\frac{1}{2}$时,求不等式f(x)≥4的解集;
(Ⅱ)若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一动圆M与圆M1:(x+1)2+y2=1外切,与圆M2:(x-1)2+y2=9内切,则动圆圆心M点的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2)C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)

查看答案和解析>>

同步练习册答案