分析 切线的斜率存在时设过点A的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.切线斜率不存在时,直线方程验证即可.
解答 解:将点A(2,4))代入圆的方程得22+42=20>4,∴点P在圆外,
当过点P的切线斜率存在时,设所求切线的斜率为k,
由点斜式可得切线方程为y-4=k(x-2),即kx-y-2k+4=0,
∴$\frac{|-2k+4|}{\sqrt{{k}^{2}+1}}$=2,解得k=$\frac{3}{4}$.
故所求切线方程3x-4y+10=0.
当过点A的切线斜率不存在时,方程为x=2,也满足条件.
故所求圆的切线方程为3x-4y+10=0或x=2.
点评 本题考查直线与圆的位置关系,考查切线方程.若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②③ | C. | ②④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±512 | B. | 512 | C. | ±1024 | D. | 1024 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com