精英家教网 > 高中数学 > 题目详情
13.设函数$f(x)=|{x-\frac{5}{2}}|+|{x-a}|$,x∈R.
(Ⅰ)当$a=-\frac{1}{2}$时,求不等式f(x)≥4的解集;
(Ⅱ)若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

分析 (Ⅰ)分类讨论,求不等式f(x)≥4的解集;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求出f(x)最小值为$|{\frac{5}{2}-a}|$,从而$|{\frac{5}{2}-a}|≥a$,解得$a≤\frac{5}{4}$,即可求实数a的最大值.

解答 解:(Ⅰ)$f(x)=|{x-\frac{5}{2}}|+|{x+\frac{1}{2}}|$=$\left\{\begin{array}{l}-2x+2,x<-\frac{1}{2}\\ 3,-\frac{1}{2}≤x≤\frac{5}{2}\\ 2x-2,x>\frac{5}{2}\end{array}\right.$
由f(x)≥4得$\left\{\begin{array}{l}x<-\frac{1}{2}\\-2x+2≥4\end{array}\right.$或$\left\{\begin{array}{l}x>\frac{5}{2}\\ 2x-2≥4\end{array}\right.$,解得x≤-1或x≥3,
所以不等式的解集为{x|x≤1或x≥3};
(Ⅱ)由绝对值的性质得$f(x)=|{x-\frac{5}{2}}|+|{x-a}|≥$$|{({x-\frac{5}{2}})-({x-a})}|=|{a-\frac{5}{2}}|$,
所以f(x)最小值为$|{\frac{5}{2}-a}|$,从而$|{\frac{5}{2}-a}|≥a$,解得$a≤\frac{5}{4}$,因此a的最大值为$\frac{5}{4}$.

点评 本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设{an}为等差数列,若$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的前n项积为Tn,若log2a3+log2a7=2,则T9的值为(  )
A.±512B.512C.±1024D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|-1≤x≤3},集合B{x|2x>4},则A∩(∁UB)=(  )
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|0≤x≤2}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组[40,50);第二组[50,60);…;第六组[90,100],并据此绘制了如图所示的频率分布直方图.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是$\frac{20}{21}$.
(Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;
(Ⅱ)设随机变量X为在维持秩序岗位服务的一班的志愿者的人数,求X分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,角A,B,C所对的边分别是a,b,c,且点A(-1,0),B(1,0),动点C满足$\frac{a+b}{c}$=λ(λ为常数且λ>1),动点C的轨迹为曲线E.
(Ⅰ)试求曲线E的方程;
(Ⅱ)当λ=$\sqrt{3}$时,过定点B(1,0)的直线与曲线E交于P,Q两点,N是曲线E上不同于P,Q的动点,试求△NPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的一个焦点F1($\sqrt{3}$,0),短轴的长为2,双曲线D以椭圆C的焦点为焦点,实轴长与椭圆C的短轴长相等.
(1)求椭圆C的方程;
(2)求双曲线D的方程;
(3)求椭圆C与双曲线D相交所得的矩形面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正四棱锥P-ABCD的底面边长为$\sqrt{2}$,体积为$\frac{4}{3}$,则此棱锥的内切球与外接球的半径之比为(  )
A.1:2B.2:5C.1:3D.4:5

查看答案和解析>>

同步练习册答案