精英家教网 > 高中数学 > 题目详情
5.已知△ABC中,角A,B,C所对的边分别是a,b,c,且点A(-1,0),B(1,0),动点C满足$\frac{a+b}{c}$=λ(λ为常数且λ>1),动点C的轨迹为曲线E.
(Ⅰ)试求曲线E的方程;
(Ⅱ)当λ=$\sqrt{3}$时,过定点B(1,0)的直线与曲线E交于P,Q两点,N是曲线E上不同于P,Q的动点,试求△NPQ面积的最大值.

分析 (Ⅰ)由题意可知丨CA丨+丨CB丨=2λ>2,则动点C的轨迹P为椭圆(除去A、B与共线的两个点).即可求得求曲线E的方程;
(Ⅱ)当λ=$\sqrt{3}$时,求得椭圆方程,分类讨论,设直线l的方程,代入椭圆方程,利用韦达定理,弦长公式及点到直线的距离公式,利用导数求得函数单调性区间,即可求得△NPQ面积的最大值.

解答 解:(Ⅰ)在△ABC中,由丨AB丨=2,则丨CA丨+丨CB丨=2λ(定值),且2λ>2,
∴动点C的轨迹P为椭圆(除去A、B与共线的两个点).
设其标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),则a22b22=1,
∴求曲线的轨迹方程为$\frac{{x}^{2}}{{λ}^{2}}+\frac{{y}^{2}}{{λ}^{2}-1}=1$(x≠±λ),
(Ⅱ)当λ=$\sqrt{3}$时,椭圆方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$(x≠±$\sqrt{3}$),.
①过定点B的直线与x轴重合时,△NPQ面积无最大值,
②过定点B的直线不与x轴重合时,
设l方程为:x=my+1,P(x1,y1)、Q(x2,y2),
若m=0,由x≠±$\sqrt{3}$,故此时△NPQ面积无最大值.
根据椭圆的几何性质,不妨设m>0,
联立方程组$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去x整理得:(3+2m2)y2+4my-4=0,
∴y1+y2=-$\frac{4m}{3+2{m}^{2}}$,y1y2=-$\frac{4}{3+2{m}^{2}}$,则丨PQ丨=$\sqrt{1+{m}^{2}}$丨y1-y2丨=$\frac{4\sqrt{3}({m}^{2}+1)}{3+2{m}^{2}}$.
因为当直线l与平行且与椭圆相切时,切点N到直线l的距离最大,
设切线l:x=my+n(n<$\sqrt{3}$),
联立$\left\{\begin{array}{l}{x=my+n}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去x整理得(3+2m2)y2+4mny+2n2-6=0,
由△=(4mn)2-4(3+2m2)(2n2-6)=0,解得:2n2-3+2m2=0,n<-$\sqrt{3}$.
又点N到直线l的距离d=$\frac{丨n-1丨}{\sqrt{{m}^{2}+1}}$,
∴△NPQ面积S=$\frac{1}{2}$丨PQ丨d=$\frac{1}{2}$×$\frac{4\sqrt{3}({m}^{2}+1)}{3+2{m}^{2}}$×$\frac{丨n-1丨}{\sqrt{{m}^{2}+1}}$=$\frac{2\sqrt{3}丨n-1丨\sqrt{{m}^{2}+1}}{3+2{m}^{2}}$,
∴S2=$\frac{12(n-1)^{2}({m}^{2}+1)}{(3+2{m}^{2})^{2}}$.将n2=3+2m2,代入得:S2=6(1-$\frac{1}{n}$)2(1-($\frac{1}{n}$)2),
令t=$\frac{1}{n}$∈(-$\frac{\sqrt{3}}{3}$,0),设函数f(t)=6(1-t)2(1-t2),则f′(t)=-12(t-1)2(2t+1),
由当t∈(-$\frac{\sqrt{3}}{3}$,-$\frac{1}{2}$)时,f′(t)>0,当t∈(-$\frac{1}{2}$,0)时,f′(t)<0,
∴f(t)在(-$\frac{\sqrt{3}}{3}$,-$\frac{1}{2}$)上是增函数,在(-$\frac{1}{2}$,0)上是减函数,
∴fmin(t)=f(-$\frac{1}{2}$)=$\frac{81}{8}$.
故m2=$\frac{1}{2}$时,△NPQ面积最大值是$\frac{9\sqrt{2}}{4}$.
∴当l的方程为x=±$\frac{\sqrt{2}}{2}$y+1时,△NPQ的面积最大,最大值为$\frac{9\sqrt{2}}{4}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式,三角形的面积公式,考查利用导数求函数的单调性及最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量)[80,85)[85,90)[90,95)[95,100)
频数(个)5102015
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的坐标所适合的方程,并求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=|{x-\frac{5}{2}}|+|{x-a}|$,x∈R.
(Ⅰ)当$a=-\frac{1}{2}$时,求不等式f(x)≥4的解集;
(Ⅱ)若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\frac{1}{2}$x-1)(2x-$\frac{1}{x}$)6的展开式中x的系数为-80.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+3y的最小值4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知从全部105人中随机抽取1人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表:若按95%的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.
优秀非优秀总计
甲班104555
乙班203050
合计3075105
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一动圆M与圆M1:(x+1)2+y2=1外切,与圆M2:(x-1)2+y2=9内切,则动圆圆心M点的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠±2)C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(x≠-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,两条渐近线分别为l1,l2,经过右焦点F2垂直于l1的直线分别交l1,l2于A,B两点,若|OA|+|OB|=2|AB|,且F2在线段AB上,则双曲线的渐近线斜率为(  )
A.$±\frac{{\sqrt{5}}}{2}$B.±2C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

同步练习册答案