精英家教网 > 高中数学 > 题目详情
18.来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是$\frac{20}{21}$.
(Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;
(Ⅱ)设随机变量X为在维持秩序岗位服务的一班的志愿者的人数,求X分布列及期望.

分析 (Ⅰ)记“至少一名一班志愿者被分到运送矿泉水岗位”为事件A,
利用对立事件计算对应的概率值,
求出“清扫卫生岗位恰好一班1人,二班2人”的概率值;
(Ⅱ)根据题意知X的所有可能值,写出X的分布列,计算数学期望值.

解答 解:(Ⅰ)记“至少一名一班志愿者被分到运送矿泉水岗位”为事件A,
则A的对立事件为“没有一班志愿者被分到运送矿泉水岗位”,
设有一班志愿者x个,1≤x<9,那么$P(A)=1-\frac{{C_{9-x}^3}}{C_9^3}=\frac{20}{21}$,
解得x=5,即来自一班的志愿者有5人,来自二班志愿者4人;
记“清扫卫生岗位恰好一班1人,二班2人”为事件C,
那么$P(C)=\frac{C_5^1C_4^2}{C_9^3}=\frac{5}{14}$,
所有清扫卫生岗位恰好一班1人,二班2人的概率是$\frac{5}{14}$;
(Ⅱ)根据题意,X的所有可能值为0,1,2,3;
$P(X=1)=\frac{C_5^1C_4^2}{C_9^3}=\frac{5}{14}$,
$P(X=1)=\frac{C_5^2C_4^1}{C_9^3}=\frac{10}{21}$,
$P(X=3)=\frac{C_5^3C_4^0}{C_9^3}=\frac{5}{42}$,
所以X的分布列为:

X0123
P$\frac{1}{21}$$\frac{5}{14}$$\frac{10}{21}$$\frac{5}{42}$
数学期望为$E(X)=0×\frac{1}{21}+1×\frac{5}{14}+2×\frac{10}{21}+3×\frac{5}{42}$=$\frac{5}{3}$.

点评 本题考查了离散型随机变量的分布列与数学期望的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ex+2cosx,则曲线y=f(x)在点(0,f(0))处的切线方程x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等比数列{an}的前n项和为Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,则数列{$\frac{1}{{a}_{n}}$}的前4项和为(  )
A.$\frac{5}{16}$或$\frac{11}{16}$B.$\frac{5}{16}$或$\frac{7}{16}$C.$\frac{5}{16}$或$\frac{15}{16}$D.$\frac{3}{16}$或$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥P-ABC的四个顶点均在半径为2的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数$f(x)=|{x-\frac{5}{2}}|+|{x-a}|$,x∈R.
(Ⅰ)当$a=-\frac{1}{2}$时,求不等式f(x)≥4的解集;
(Ⅱ)若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面内,定点A,B,C,D满足|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|=2,$\overrightarrow{DA}$•$\overrightarrow{BC}$=$\overrightarrow{DB}$•$\overrightarrow{AC}$=$\overrightarrow{DC}$•$\overrightarrow{AB}$=0,动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则|$\overrightarrow{BM}$|2的最大值为$\frac{49}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+3y的最小值4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)=\frac{x^2}{{{x^2}+1}}$的定义域为{0,1},则值域为{0,$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,内角A,B,C所对应的边分别为a,b,c,且asin2B+bsinA=0,若△ABC的面积S=$\sqrt{3}$b,则△ABC面积的最小值为(  )
A.1B.12$\sqrt{3}$C.8$\sqrt{3}$D.12

查看答案和解析>>

同步练习册答案