精英家教网 > 高中数学 > 题目详情
2.对任意|m|≤2,不等式x2+mx+1>2x+m恒成立,则x的取值范围为(  )
A.x>3或x<-1B.x>3C.x<-1D.-1<x<3

分析 问题化为函数f(m)=m(x-1)+x2-2x+1在m∈[-2,2]时满足$\left\{\begin{array}{l}{f(-2)>0}\\{f(2)>0}\end{array}\right.$,求出解集即可.

解答 解:∵|m|≤2,∴-2≤m≤2;
不等式x2+mx+1>2x+m恒成立,
化为m(x-1)+x2-2x+1>0恒成立;
设f(m)=m(x-1)+x2-2x+1,
则f(m)在m∈[-2,2]时满足$\left\{\begin{array}{l}{f(-2)>0}\\{f(2)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{{x}^{2}-4x+3>0}\\{{x}^{2}-1>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x<1或x>3}\\{x<-1或x>1}\end{array}\right.$,
即x<-1或x>3,
∴x的取值范围是x<-1或x>3.
故选:A.

点评 解不等式恒成立问题,通常借助于函数思想或方程思想转化为求函数的最值或利用函数的图象或判别式的方法求解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$f(x)={x^{-2{m^2}+m+3}}(m∈{Z})$是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),$b=f({{{log}_{\frac{1}{2}}}3})$,c=f(21,6),则a,b,c的大小关系是(  )
A.c<a<bB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有27个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知偶函数f(x)在[0,+∞)上是单调函数,且图象经过A(0,-1),B(3,1)两点,f(x)<1的解集为(-3,3) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;命题q:函数y=(2a2-a)x为增函数.命题r:a满足$\frac{2a-1}{a-2}≤1$.
(1)若p∨q是真命题且p∧q是假题.求实数a的取值范围.
(2)试判断命题¬p是命题r成立的一个什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若圆台的上、下底面半径的比为3:5,则它的中截面分圆台上下两部分面积之比为(  )
A.3:5B.9:25C.5:$\sqrt{41}$D.7:9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a,b是正数,直线2ax+by-2=0被圆x2+y2=4截得的弦长为2$\sqrt{3}$,则t=a$\sqrt{1+2{b}^{2}}$取得最大值时a的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$sinα=\frac{4}{5},α∈({\frac{π}{2},π}),cosβ=-\frac{5}{13},β是第三象限角$.
(1)求sin(α-β)的值
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α是第二象限角,sin α=$\frac{5}{13}$,则tan α=(  )
A.-$\frac{5}{12}$B.$\frac{5}{12}$C.-$\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

同步练习册答案