精英家教网 > 高中数学 > 题目详情
14.若a,b是正数,直线2ax+by-2=0被圆x2+y2=4截得的弦长为2$\sqrt{3}$,则t=a$\sqrt{1+2{b}^{2}}$取得最大值时a的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{3}{4}$

分析 找出圆心坐标和圆的半径,由直线被圆截取的弦长为2$\sqrt{3}$,可得圆心到直线的距离$\frac{2}{\sqrt{4{a}^{2}+{b}^{2}}}$=1,再利用配方法,即可求出结论.

解答 解:圆的圆心坐标为(0,0),半径r=2,
由直线被圆截取的弦长为2$\sqrt{3}$,可得圆心到直线的距离$\frac{2}{\sqrt{4{a}^{2}+{b}^{2}}}$=1,
∴4a2+b2=4,
t=a$\sqrt{1+2{b}^{2}}$=$\sqrt{{a}^{2}(9-8{a}^{2})}$=$\sqrt{-8({a}^{2}-\frac{9}{16})^{2}+\frac{81}{32}}$,
则a=$\frac{3}{4}$时,t=a$\sqrt{1+2{b}^{2}}$取得最大值.
故选D.

点评 此题考查了直线与圆相交的性质,以及配方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列四个函数中,在区间(0,1)上是减函数的是(  )
A.y=log2xB.$y=\frac{1}{x}$C.y=2xD.$y={x^{\frac{2}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=ax-2+2(a>0,且a≠1)的图象恒过定点P,则P点的坐标是(2,3);函数g(x)=loga(x+1)-2(a>0,且a≠1)的图象恒过定点M,则M点的坐标是(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对任意|m|≤2,不等式x2+mx+1>2x+m恒成立,则x的取值范围为(  )
A.x>3或x<-1B.x>3C.x<-1D.-1<x<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是16或64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(cos2x)=1-2sin2x,则f'(x)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个三位自然数abc的百位,十位,个位上的数字依次为a,b,c,当且仅当a<b且c<b时称为“凸数”.若a,b,c∈{5,6,7,8,9},且a,b,c互不相同,任取一个三位数abc,则它为“凸数”的概率是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,某公园摩天轮的半径为40m,点O距地面的高度为50m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处.
(Ⅰ)已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h,求2018min时点P距离地面的高度;
(Ⅱ)当离地面50+20$\sqrt{3}$m以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园全貌?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=1,a2=2,an+2-an=1+(-1)n(n∈N*),则S100=2600.

查看答案和解析>>

同步练习册答案