分析 (1)求出上底,即可将l表示成关于α的函数l=f(α);
(2)求导数,取得函数的单调性,即可解决当α为何值时l最小?并求最小值.
解答 解:(1)设上底长为a,则S=$\frac{(a+a+\frac{2h}{tanα})h}{2}=S$,
∴a=$\frac{S}{h}$-$\frac{h}{tanα}$,
∴l=$\frac{S}{h}$-$\frac{h}{tanα}$+$\frac{2h}{sinα}$(0<α<$\frac{π}{2}$);
(2)l′=h$•\frac{1-2cosα}{si{n}^{2}α}$,
∴0<α<$\frac{π}{3}$,l′<0,$\frac{π}{3}$<α<$\frac{π}{2}$,l′>0,
∴$α=\frac{π}{3}$时,l取得最小值$\frac{S}{h}$+$\sqrt{3}$hm.
点评 本题考查利用数学知识解决实际问题,考查导数知识的运用,取得函数的模型是关键.
科目:高中数学 来源: 题型:选择题
| A. | (-3,1) | B. | (-1,3) | C. | (1,+∞) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 用水量(吨) | [0,10] | (10,20] | (20,30] | (30,40] | (40,50] | 合计 |
| 频数 | 50 | 200 | 100 | b | 50 | 500 |
| 频率 | 0.1 | a | 0.2 | c | 0.1 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com