精英家教网 > 高中数学 > 题目详情
1.已知扇形的周长为4cm,则扇形面积最大时,扇形的中心角弧度数为2.

分析 设扇形的中心角弧度数为α,半径为r,可得2r+αr=4,α=$\frac{4-2r}{r}$,因此$S=\frac{1}{2}α{r}^{2}$=(2-r)r,再利用基本不等式的性质即可得出.

解答 解:设扇形的中心角弧度数为α,半径为r,
则2r+αr=4,∴α=$\frac{4-2r}{r}$,
∴$S=\frac{1}{2}α{r}^{2}$=$\frac{1}{2}×\frac{4-2r}{r}$×r2=(2-r)r$≤(\frac{2-r+r}{2})^{2}$=1,
当且仅当2-r=r,解得r=1时,扇形面积最大.
此时α=2.
故答案为:2.

点评 本题考查了扇形的面积与弧长公式、基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n∈N*),则S6=(  )
A.44B.45C.$\frac{1}{3}$(46-1)D.$\frac{1}{4}$(45-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数轴上,实数$\frac{6{a}^{2}}{9+{a}^{4}}$对应的点为A,实数1对应的点为B,那么点A与点B的位置关系是怎样的?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),当x∈[-$\frac{π}{2}$,$\frac{π}{8}$]时,f(x)-a=0有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足$\overrightarrow{OP}$=$\frac{1}{3}$($\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{2}\overrightarrow{OB}$+2$\overrightarrow{OC}$),则点P一定为三角形ABC的(  )
A.重心B.AB边的中点
C.AB边中线的中点D.AB边中线的三等分点(非重心)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:x2-5x+6≥0;命题q:0<x<4,若p或q为真,p且q为假,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点A(cos40°,sin40°),B=(sin20°,cos20°),则$\overrightarrow{AB}$2的值是(  )
A.1B.3C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$.
(I)求角A的大小;
(Ⅱ)若函数$y=\sqrt{3}sinB+sin(C-\frac{π}{6})$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.据调查甲、乙两地一年中雨天占得比例分别为20%和18%,并且两地是否下雨是相互独立的,则乙地为雨天时,甲地也是雨天的概率(  )
A.0.2B.0.18C.0.036D.0.38

查看答案和解析>>

同步练习册答案