精英家教网 > 高中数学 > 题目详情
15.已知数列{an}为等差数列,前n项和为Sn,若a7+a8+a9=$\frac{π}{3}$,则cosS15的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

分析 由题意和等差数列的性质可得a8=$\frac{π}{9}$,进而可得S15=$\frac{5π}{3}$,计算余弦值可得.

解答 解:由等差数列的性质可得3a8=a7+a8+a9=$\frac{π}{3}$,∴a8=$\frac{π}{9}$,
∴S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=$\frac{15×2{a}_{8}}{2}$=15a8=$\frac{5π}{3}$,
∴cosS15=cos$\frac{5π}{3}$=cos$\frac{π}{3}$=$\frac{1}{2}$
故选:B

点评 本题考查等差数列的求和公式和等差数列的性质,涉及三角函数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,且S5=25,a7=13,数列{bn}的前n项和为Tn,Tn=2bn-1
(1)求数列{an}和{bn}的通项公式;
(2)若cn=anbn,求数列{cn}的前n项和Qn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若定义R在上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)x,g(x)=f($\frac{π}{2}$)-$\frac{1}{4}$x2+(1+a)x+a
(Ⅰ)求函数f(x)解析式;
(Ⅱ)求函数g(x)单调区间;
(Ⅲ)当a≥2且x≥1时,试比较|$\frac{e}{x}$-lnx|+lnx和g′(x-1)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}}\right.$(θ为参数).
(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(2)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个命题中正确的命题是(  )
A.“x>2”是“x>1”的必要不充分条件
B.“log2a>log2b”是“a>b”必要不充分条件
C.“a≥0”是“a2≤a”的必要不充分条件
D.“log2x<0”是“($\frac{1}{2}$)x-1>1”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若按右侧算法流程图运行后,输出的结果是$\frac{5}{6}$,则输入的N的值可以等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图,则该几何体的体积为(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.随着经济发展带来的环境问题,我国很多城市提出了大力发展城市公共交通的理念,同时为了保证不影响市民的正常出行,就要求对公交车的数量必须进行合理配置.为此,某市公交公司在某站台随机对20名乘客进行了调查,其已候车时间情况如表(单位:分钟)
组别已候车时间人数
[0,5)4
[5,10)6
[10,15)6
[15,20)3
[20,25]1
(1)画出已候车时间的频率分布直方图
(2)求这20名乘客的平均候车时间
(3)在这20名乘客中随机抽查一人,求其已候车时间不少于15分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案