精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=sinx-$\sqrt{3}$cosx的定义域为[a,b],值域为[-1,2],则b-a的取值范围为(  )
A.$[\frac{2π}{3},\frac{4π}{3}]$B.$[{\frac{5π}{6},2π}]$C.$[{\frac{7π}{6},\frac{5π}{3}}]$D.$[{\frac{7π}{6},2π}]$

分析 通过化简可得y=sin(x-$\frac{π}{3}$)∈[-$\frac{1}{2}$,1],画出其图象,即得结论.

解答 解:f(x)=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$),
∵f(x)的值域为[-1,2],
∴y=sin(x-$\frac{π}{3}$)∈[-$\frac{1}{2}$,1],其图象如图:
其中A($\frac{π}{6}$,-$\frac{1}{2}$),B($\frac{5π}{6}$,1),C($\frac{3π}{2}$,-$\frac{1}{2}$),
∴b-a的最小值为:$\frac{5π}{6}$-$\frac{π}{6}$=$\frac{2π}{3}$,
b-a的最大值为:$\frac{3π}{2}$-$\frac{π}{6}$=$\frac{4π}{3}$,
即b-a的取值范围为:[$\frac{2π}{3}$,$\frac{4π}{3}$],
故选:A.

点评 本题考查三角函数的取值范围,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)的定义域为D,区间I⊆D,若存在常数L,使得对任意x1,x2∈I,都有|f(x1)-f(x2)|≤L|x1-x2|,则称函数f(x)在区间I上满足李普希兹(Lipschitz)条件,已知f(x)=x2ex在区间(-∞,1]上满足李普希兹条件,则L的最小值是(  )
A.3eB.2eC.eD.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为(  )
A.a,b,c,d全都大于等于0B.a,b,c,d全为正数
C.a,b,c,d中至少有一个正数D.a,b,c,d中至多有一个负数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)>0,且f(x)=axg(x)(a>0a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$.若数列$\frac{f(n)}{g(n)}$的前n项和小于126,则n的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,a2=2,a5=16,则a6=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=ex上的点到直线y=x的距离的最小值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{e}{2}$D.$\frac{{\sqrt{e}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{x-1}{x+2}$>0的解集是(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的函数f(x)既是奇函数,又是周期函数,且周期为$\frac{3}{2}$.当$x∈[0,\frac{3}{4}]$时,$f(x)=\frac{a+sinπx}{{\sqrt{2}+cosπx}}-bx$(a、b∈R),则 f(1)+f(2)+…+f(100)的值为$-\frac{{\sqrt{2}}}{2}+\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若椭圆C上的一动点到右焦点的最短距离为$2-\sqrt{2}$,且右焦点到直线$x=\frac{a^2}{c}$的距离等于短半轴的长,已知P(4,0),过P的直线与椭圆交于M、N两点
(Ⅰ)求椭圆C的方程   
(Ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围.

查看答案和解析>>

同步练习册答案