精英家教网 > 高中数学 > 题目详情
18.如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=BC=1,AD=2,AA1=$\sqrt{2}$.
(1)求证:直线C1D⊥平面ACD1
(2)试求三棱锥A1-ACD1的体积.

分析 (1)通过证明C1D⊥CD1,C1D⊥AC,说明AC与CD1是平面ACD1内的两条相交直线,利用直线与平面垂直的判定定理证明直线C1D⊥平面ACD1
(2)求三棱锥A1-ACD1的体积.转化为三棱锥C-AA1D1的体积,求出底面面积与高,即可求解棱锥的体积.

解答 解:(1)证明:在梯形ABCD内过C点作CE⊥AD交AD于点E,
则由底面四边形ABCD是直角梯形,AB⊥AD,AB=BC=1,
以及AD=2,AA1=$\sqrt{2}$.可得:CE=1,且AC=CD=$\sqrt{2}$,AA${\;}_{1}=C{C}_{1}=\sqrt{2}$,AC⊥CD.
又由题意知CC1⊥面ABCD,从而AC⊥CC1,而CC1∩CD=C,
故AC⊥C1D.
因CD=CC1,及已知可得CDD1C1是正方形,从而C1D⊥CD1
因C1D⊥CD1,C1D⊥AC,且AC∩CD1=C,
所以C1D⊥面ACD1
(2)因三棱锥A1-ACD1与三棱锥C-AA1D1是相同的,故只需求三棱锥C-AA1D1的体积即可,而CE⊥AD,
且由AA1⊥面ABCD可得CE⊥AA1,又因为AD∩AA1=A,
所以有CE⊥平面ADD1A1,即CE为三棱锥C-AA1D1的高.
故V${\;}_{C-A{A}_{1}{D}_{1}}$=$\frac{1}{3}×\frac{1}{2}×A{A}_{1}×{A}_{1}{D}_{1}×CE$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×1=\frac{\sqrt{2}}{3}$.

点评 本题考查空间几何体直线与平面垂直的判断与证明,几何体的体积的求法,考查逻辑推理能力以及计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若0<x<$\frac{π}{2}$,则4x与3sinx的大小关系是(  )
A.4x<3sinxB.4x>3sinxC.4x=3sinxD.与x取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x1、x2是方程x2+mx+3=0(m∈R)的两虚根,则|x1|+|x2|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,如果sinA=sinC,B=30°,角B所对的边长b=2,则△ABC的面积为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(1,1),则下列结论正确的是(  )
A.$\overrightarrow{a}$•$\overrightarrow{b}$=2B.$\overrightarrow{a}$∥$\overrightarrow{b}$C.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|D.$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,则a10=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)求f(x)的单调区间;
(3)若对任意x∈(0,+∞),均有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$)
(Ⅰ)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a=2,b=6,B=60°,则c=$1+\sqrt{33}$.

查看答案和解析>>

同步练习册答案