精英家教网 > 高中数学 > 题目详情
已知抛物线y2=8x的焦点F到双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)渐近线的距离为
4
5
5
,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,则该双曲线的方程为
 
考点:抛物线的简单性质,双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:确定抛物线的焦点坐标,双曲线的渐近线方程,进而可得b=2a,再利用抛物线的定义,结合P到双曲线C的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,可得FF1=3,从而可求双曲线的几何量,从而可得结论.
解答: 解:抛物线y2=8x的焦点F(2,0),双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)一条渐近线的方程为ax-by=0,
∵抛物线y2=8x的焦点F到双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)渐近线的距离为
4
5
5

2a
a2+b2
=
4
5
5

∴b=2a,
∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,
∴FF1=3,
∴c2+4=9,
∴c=
5

∵c2=a2+b2,b=2a,
∴a=1,b=2,
∴双曲线的方程为
y2
4
-x2=1

故答案为:
y2
4
-x2=1
点评:本题主要考查了抛物线、双曲线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下几个命题:
①由曲线y=x2与直线y=2x围成的封闭区域的面积为
4
3

②已知点A是定圆C上的一个定点,线段AB为圆的动弦,若
OP
=
1
2
OA
+
OB
),O为坐标原点,则动点P的轨迹为圆;
③把5本不同的书分给4个人,每人至少1本,则不同的分法种数为
A
4
5
A
1
4
=480种.
④若直线l∥平面α,直线l⊥直线m,直线l?平面β,则β⊥α.
其中,正确的命题有
 
.(将所有正确命题的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C所对的边,A=
π
3
,a=
3
,c=1,则△ABC的面积S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a-3i
i
=b+i(a,b∈R),其中i为虚数单位,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一个三棱锥的三视图中,其俯视图是正三角形,主视图及左视图的轮廓都是直角三角形,若这个三棱锥的四个顶点都在一个球的球面上,则这个球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-cosx-sinx,f′(x)是其导函数.若命题“?x∈[
π
2
,π],f′(x)<a”是真命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+a|-|x-4|,x∈R
①当a=1时,解不等式f(x)<2;
②若关于x的不等式f(x)≤5-|a+1|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x-a|+|x-2|>1的解集为全体实数R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(cosα,sinα),
b
=(cosx,sinx),若函数f(x)=
a
b
是奇函数,则α可以是(  )
A、0
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案