精英家教网 > 高中数学 > 题目详情
设f(x)=-cosx-sinx,f′(x)是其导函数.若命题“?x∈[
π
2
,π],f′(x)<a”是真命题,则实数a的取值范围是
 
考点:导数的运算,全称命题
专题:导数的概念及应用,简易逻辑
分析:先求出f′(x),然后利用命题是真命题,即可求a的取值范围.
解答: 解:f′(x)=sinx-cosx=
2
sin(x-
π
4
)
π
4
≤x-
π
4
4
,最大值为
2
,a>
2

故答案为:(
2
,+∞)
点评:本题主要考查导数的运算与简单命题的真假应用,将命题进行等价化简是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x
x-1
图象与函数y=2cos2
π
4
x(-3≤x≤5)图象所有交点的纵坐标之和
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的参数方程是
x=
3
2
t+m
y=
1
2
t
(t是参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,若圆C的极坐标方程是ρ=4cosθ,且直线l与圆C相切,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是不重合的直线,α,β是不重合的平面,有下列命题:
①若m?α,n∥α,则m∥n;
②若m∥n,m⊥α,则n⊥α;
③若m⊥α,m?β,则α⊥β;
④若m⊥α,m⊥β,则α∥β.
其中真命题有
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的焦点F到双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)渐近线的距离为
4
5
5
,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=-2的距离之和的最小值为3,则该双曲线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x2+1)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:x=3,q:x2-2x-3=0,则下面表述正确的是(  )
A、p是q的充分条件,但p不是q的必要条件
B、p是q的必要条件,但p不是q的充分条件
C、p是q的充要条件
D、p既不是q的充分条件也不是q的必要条件

查看答案和解析>>

同步练习册答案