精英家教网 > 高中数学 > 题目详情
7.化简:$\frac{1+sin4α-cos4α}{1+sin4α+cos4α}$+$\frac{1+sin4α+cos4α}{1+sin4α-cos4α}$.

分析 利用二倍角公式化简消去“1”,化简,然后利用同角三角函数基本关系式以及二倍角公式化简即可.

解答 解:$\frac{1+sin4α-cos4α}{1+sin4α+cos4α}$+$\frac{1+sin4α+cos4α}{1+sin4α-cos4α}$
=$\frac{1+2sin2αcos2α-1+2si{n}^{2}2α}{1+2sin2αcos2α+2co{s}^{2}2α-1}$+$\frac{1+2sin2αcos2α+2co{s}^{2}2α-1}{1+2sin2αcos2α-1+2si{n}^{2}2α}$
=$\frac{2sin2α(cos2α+sin2α)}{2cos2α(sin2α+cos2α)}+\frac{2cos2α(sin2α+cos2α)}{2sin2α(cos2α+sin2α)}$
=$\frac{sin2α}{cos2α}+\frac{cos2α}{sin2α}$
=$\frac{2}{sin4α}$.

点评 本题考查三角函数值的化简,是中档题,解题时要认真审题,注意二倍角公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知三棱锥P-ABC的所有顶点都在球O的球面上,且AB=BC=1,AC=CP=PA=$\sqrt{2}$,三棱锥P-ABC的体积为$\frac{1}{6}$,则球O的表面积为11π或3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知四边形ABCD是梯形,E,F分别是腰的中点,M,N是线段EF上的两个点,且EM=MN=NF,下底是上底的2倍,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,则$\overrightarrow{DN}$=(  )
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{1}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{4}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
 租用单车数量x(千辆) 3 4 5 8
 每天一辆车平均成本y(元)3.2  2.4 21.9  1.7
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
  租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估计值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 残差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估计值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
残差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入8.4元;投放1万辆时,该公司平均一辆单车一天能收入7.6元.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1,又A∈C,已知A(4,2$\sqrt{2}$),F(4,0),若由F射至A的光线被双曲线C反射,反射光线通过P(8,k),则k=$3\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an+1=3an-an-1(n≥2),a1=a2=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.到两坐标轴的距离相等的轨迹方程是(  )
A.y=xB.y=|x|C.x2+y2=0D.y2=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2
(2)已知角终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足a1=1,an+1=$\frac{{2}^{n+1}•{a}_{n}}{{a}_{n}+{2}^{n}}$(n∈N+).
(1)证明:数列{$\frac{{2}^{n}}{{a}_{n}}$}是等差数列;
(2)设bn=$\frac{2n-1}{(n+1){a}_{n}}$,数列{bn}的前n项和为Tn,对任意的n∈N+,t∈[1,2],at2-2t+a2+$\frac{1}{2}$≤Tn恒成立,求正数a的取值范围.

查看答案和解析>>

同步练习册答案