精英家教网 > 高中数学 > 题目详情
5.已知x<0,-2<y<-1,则下列结论正确的是(  )
A.xy>x>xy2B.xy2>xy>xC.xy>xy2>xD.x>xy>xy2

分析 取x=-3,y=-$\frac{3}{2}$,可得xy=$\frac{9}{2}$,x=-3,xy2=-3×$(-\frac{3}{2})^{2}$=-$\frac{27}{4}$<-3.即可得出结论.

解答 解:取x=-3,y=-$\frac{3}{2}$,可得xy=$\frac{9}{2}$,x=-3,xy2=-3×$(-\frac{3}{2})^{2}$=-$\frac{27}{4}$<-3.
可排除B,C,D.
故选:A.

点评 本题考查了不等式的基本性质和取特殊值法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若tanα、tanβ分别是方程x2+x-2=0的两个根,则tan(α+β)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,t)(t>0),若丨$\overrightarrow{a}-\overrightarrow{b}$丨=$\overrightarrow{a}$•$\overrightarrow{b}$,t=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果P,P2,…Pn是抛物线C=y2=8x上的点,它们的横坐标依次为:x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=2017,|P1F|+|P2F|+…+|PnF|=(  )
A.n+2017B.n+4034C.2n+2017D.2n+4034

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b∈R,下列四个条件中,使a<b成立的必要而不充分的条件是(  )
A.a2<b2B.a<|b|C.ac2<bc2D.a+c<b+c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程为,$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4sinθ.
(1)求圆C的圆心到直线l的距离;
(2)设圆C与直线l交于点A、B两点,P($\sqrt{3}$,2),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(ax+1)-ax-lna.
(1)讨论f(x)的单调性;
(2)若f(x)<ax恒成立,求a的取值范围;
(3)若存在-$\frac{1}{a}$<x1<0,x2>0,使得f(x1)=f(x2)=0,证明x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{1+i}{i}$的虚部是(  )
A.-iB.1C.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b,c,d是四条不同的直线,且a,b是异面直线,则下面说法正确的是(  )
A.若c,d 与a,b都相交,则c,d是异面直线
B.若c∥a,d∥b,则 c,d 是异面直线
C.若c,d 与 a,b 都异面,则 c,d 是异面直线
D.若c,d 与 a,b 都垂直,则 c∥d

查看答案和解析>>

同步练习册答案