10£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¬$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£©£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=4sin¦È£®
£¨1£©ÇóÔ²CµÄÔ²Ðĵ½Ö±ÏßlµÄ¾àÀ룻
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢BÁ½µã£¬P£¨$\sqrt{3}$£¬2£©£¬Çó|PA|•|PB|µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¬$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®Ô²CµÄ·½³ÌΪ¦Ñ=4sin¦È£¬¼´¦Ñ2=4¦Ñsin¦È£®¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬Åä·½¿ÉµÃÔ²ÐÄC£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ²CµÄÔ²Ðĵ½Ö±ÏßlµÄ¾àÀ룮
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÔ²C·½³Ì¿ÉµÃ£ºt2+$\sqrt{3}$t-1=0£¬ÀûÓÃ|PA|•|PB|=|t1t2|¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¬$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£º$\sqrt{3}$x-y-1=0£®
Ô²CµÄ·½³ÌΪ¦Ñ=4sin¦È£¬¼´¦Ñ2=4¦Ñsin¦È£®¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=4y£¬Å䷽Ϊ£ºx2+£¨y-2£©2=4£®
¿ÉµÃÔ²ÐÄC£¨0£¬2£©£®
¡àÔ²CµÄÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=$\frac{|0-2-1|}{\sqrt{£¨\sqrt{3}£©^{2}+{1}^{2}}}$=$\frac{3}{2}$£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÔ²C·½³Ì¿ÉµÃ£ºt2+$\sqrt{3}$t-1=0£¬
¿ÉµÃt1t2=-1£¬¡à|PA|•|PB|=|t1t2|=1£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²µÄλÖùØÏµ¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ä³µ¥Î»ÎªÁËÔ¤²â±¾µ¥Î»ÓõçÁ¿y¶ÈÆøÎÂx¡æÖ®¼äµÄ¹ØÏµ£¬¾­¹ýµ÷²éÊÕ¼¯Ä³4ÌìµÄÊý¾Ý£¬µÃµ½Á˻ع鷽³ÌÐÎÈç$\widehat{y}$=-2x+$\widehat{a}$£¬ÇÒÆäÖеÄ$\overline{x}$=10£¬$\overrightarrow{y}$=40£¬Ô¤²âµ±µØÆøÎÂΪ5¡æÊ±£¬¸Ãµ¥Î»µÄÓõçÁ¿µÄ¶ÈÊýΪ50£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èç¹û£¨x+$\frac{a}{x}$£©£¨x-$\frac{2}{x}$£©4µÄÕ¹¿ªÊ½Öи÷ÏîϵÊýÖ®ºÍΪ2£¬ÔòÕ¹¿ªÊ½ÖÐxµÄϵÊýÊÇ£¨¡¡¡¡£©
A£®8B£®-8C£®16D£®-16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¸´Êý$\frac{5}{-2+i}$ÔÚ¸´Æ½ÃæÉϵĶÔÓ¦µãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨2£¬1£©B£®£¨-2£¬1£©C£®£¨-2£¬-1£©D£®£¨2£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªx£¼0£¬-2£¼y£¼-1£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®xy£¾x£¾xy2B£®xy2£¾xy£¾xC£®xy£¾xy2£¾xD£®x£¾xy£¾xy2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-2£¬6]£¬xÓëf£¨x£©²¿·Ö¶ÔÓ¦ÖµÈç±í£¬f£¨x£©µÄµ¼º¯Êýy=f£¨x£©µÄͼÏóÈçͼËùʾ£®
 x-2 5
 f£¨x£©-2-2  3
ÏÂÁнáÂÛ£º
¢Ùº¯Êýf£¨x£©ÔÚ£¨0£¬3£©ÉÏÊÇÔöº¯Êý£»
¢ÚÇúÏßy=f£¨x£©ÔÚx=4´¦µÄÇÐÏß¿ÉÄÜÓëyÖá´¹Ö±£»
¢ÛÈç¹ûµ±x¡Ê[-2£¬t]ʱ£¬f£¨x£©µÄ×îСֵÊÇ-2£¬ÄÇôtµÄ×î´óֵΪ5£»
¢Ü?x1£¬x2¡Ê[-2£¬6]£¬¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Üaºã³ÉÁ¢£¬ÔòʵÊýaµÄ×îСֵÊÇ5£¬ÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬M£¬N·Ö±ðΪAB£¬BCµÄÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæB1MN¡ÍÆ½ÃæBB1D1D£»
£¨2£©µ±µãPÔÚDD1ÉÏÔ˶¯Ê±£¬ÊÇ·ñ¶¼ÓÐMN¡ÎÆ½ÃæA1C1P£¬Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÈôPÊÇD1DµÄÖе㣬ÊÔÅжÏPBÓëÆ½ÃæB1MNÊÇ·ñ´¹Ö±£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³Ð£ÄÐÅ®ÀºÇò¶Ó¸÷ÓÐ10Ãû¶ÓÔ±£¬ÏÖ½«Õâ20Ãû¶ÓÔ±µÄÉí¸ß»æÖƳɾ¥Ò¶Í¼£¨µ¥Î»£ºcm£©£®ÄжÓÔ±Éí¸ßÔÚ180cmÒÔÉ϶¨ÒåΪ¡°¸ß¸ö×Ó¡±£¬Å®¶ÓÔ±Éí¸ßÔÚ170cmÒÔÉ϶¨ÒåΪ¡°¸ß¸ö×Ó¡±£¬ÆäËû¶ÓÔ±¶¨ÒåΪ¡°·Ç¸ß¸ö×Ó¡±£®°´ÕÕ¡°¸ß¸ö×Ó¡±ºÍ¡°·Ç¸ß¸ö×Ó¡±Ó÷ֲã³éÑùµÄ·½·¨¹²³éÈ¡5Ãû¶ÓÔ±£®
£¨1£©´ÓÕâ5Ãû¶ÓÔ±ÖÐËæ»úÑ¡³ö2Ãû¶ÓÔ±£¬ÇóÕâ2Ãû¶ÓÔ±ÖÐÓС°¸ß¸ö×Ó¡±µÄ¸ÅÂÊ£»
£¨2£©ÇóÕâ5Ãû¶ÓÔ±ÖУ¬Ç¡ºÃÄÐÅ®¡°¸ß¸ö×Ó¡±¸÷1Ãû¶ÓÔ±µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+2y¡Ü4}\\{x-y¡Ü1}\\{x+2¡Ý0}\end{array}\right.$Ï£¬º¯Êýz=3x-yµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®9B£®1C£®-3D£®-9

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸