精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,t)(t>0),若丨$\overrightarrow{a}-\overrightarrow{b}$丨=$\overrightarrow{a}$•$\overrightarrow{b}$,t=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由丨$\overrightarrow{a}-\overrightarrow{b}$丨=$\overrightarrow{a}$•$\overrightarrow{b}$,即$\sqrt{(2-1)^{2}+(0-t)^{2}}$=2,求出t的值,求出所求向量的模即可.

解答 解:∵丨$\overrightarrow{a}-\overrightarrow{b}$丨=$\overrightarrow{a}$•$\overrightarrow{b}$,∴$\sqrt{(2-1)^{2}+(0-t)^{2}}$=2.
解得t=$\sqrt{3}$.
故选:C

点评 此题考查了平面向量的坐标运算,熟练掌握平面向量数量积、模运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知矩形ABCD的顶点都在半径为R的球O的球面上,AB=6,BC=2$\sqrt{3}$,棱锥O-ABCD的体积为8$\sqrt{3}$,则球O的表面积为(  )
A.B.16πC.32πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=2sinθ+2cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=3+t}\\{y=4+2t}\end{array}\right.$(t为参数,t∈R).
(1)求曲线C和直线l的普通方程;
(2)设直线l和曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图(单位:km/h),若从中任取3辆,则恰好有1辆汽车超速的概率为(  )
A.$\frac{4}{15}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)+x=0有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果(x+$\frac{a}{x}$)(x-$\frac{2}{x}$)4的展开式中各项系数之和为2,则展开式中x的系数是(  )
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方体ABCD-A1B1C1D1中,M,N分别是棱A1D,DD1的中点,则异面直线CM与AN所成角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x<0,-2<y<-1,则下列结论正确的是(  )
A.xy>x>xy2B.xy2>xy>xC.xy>xy2>xD.x>xy>xy2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=Asin(ωx+φ)(A>0,ω>0,-π≤φ≤π)一个周期的图象(如图),则这个函数的一个解析式为(  )
A.y=2sin(3x-$\frac{π}{2}$)B.y=2sin(3x-$\frac{π}{6}$)C.y=2sin(3x+$\frac{π}{6}$)D.y=2sin($\frac{3}{2}$x+$\frac{π}{2}$)

查看答案和解析>>

同步练习册答案