精英家教网 > 高中数学 > 题目详情
20.如图,在正方体ABCD-A1B1C1D1中,点P在正方体表面运动,如果${S_{△AB{D_1}}}={S_△}_{PB{D_1}}$,那么这样的点P共有(  )
A.2个B.4个C.6个D.无数个

分析 根据正方体的对称性可判定点P的个数.

解答 解:根据正方体的对称性可得到正方体表面上,A、C、D、A1,B1,C1到线段BD1的距离相等
可判定点P的个数为6个.
故选:C

点评 本题考查了正方体的性质及点到线的距离,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.下列有关回归分析的论断:
①相关系数r是衡量两个变量之间线性关系强弱的量,|r|越接近1,这两个变量线性相关关系越弱,|r|越接近0,线性相关关系越强;
②随机误差e的均值为0,它的方差σ2越小,预报真实值的精度越高;
③残差图的带状区域的宽度越窄,模型拟合的精度越髙,回归方程的预报精度越高;
④在回归模型中,x只能解释部分y的变化,故x称为解释变量,y称为预报变量,其中所有正确论断的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的定义域为[-2,6],x与f(x)部分对应值如表,f(x)的导函数y=f(x)的图象如图所示.
 x-2 5
 f(x)-2-2  3
下列结论:
①函数f(x)在(0,3)上是增函数;
②曲线y=f(x)在x=4处的切线可能与y轴垂直;
③如果当x∈[-2,t]时,f(x)的最小值是-2,那么t的最大值为5;
④?x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,则实数a的最小值是5,其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边在直线y=$\frac{4}{3}$x上,则cosα-sinα的值等于(  )
A.$\frac{4}{3}$B.-$\frac{1}{5}$或$\frac{1}{5}$C.-$\frac{3}{4}$或$\frac{3}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校男女篮球队各有10名队员,现将这20名队员的身高绘制成茎叶图(单位:cm).男队员身高在180cm以上定义为“高个子”,女队员身高在170cm以上定义为“高个子”,其他队员定义为“非高个子”.按照“高个子”和“非高个子”用分层抽样的方法共抽取5名队员.
(1)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;
(2)求这5名队员中,恰好男女“高个子”各1名队员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由a1=1,d=3确定的等差数列{an},当an=298,序号n等于(  )
A.96B.98C.100D.101

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的导数:
(1)y=2x5-3x2-4
(2)y=3cos x-4sin x
(3)y=(2x+3)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,AB=2,AC=3,A=60°,则BC=(  )
A.$\sqrt{6}$B.$\sqrt{7}$C.$\sqrt{19}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知函数f(x)=alnx-$\frac{1}{2}$x2 (a∈R).
(Ⅰ)求a=l时,求f(x)的单调区间;
(Ⅱ)讨论f(x)在定义域上的零点个数.

查看答案和解析>>

同步练习册答案