精英家教网 > 高中数学 > 题目详情
10.设f(x)是定义在R上的周期为2的偶函数,当x∈[-1,0)时,f(x)=4x+1,则f($\frac{5}{2}$)=$\frac{3}{2}$.

分析 利用函数的奇偶性以及函数的周期性,求解即可.

解答 解:f(x)是定义在R上的周期为2的偶函数,当x∈[-1,0)时,f(x)=4x+1,
则f($\frac{5}{2}$)=f($\frac{1}{2}$)=f($-\frac{1}{2}$)=${4}^{-\frac{1}{2}}$+1=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查函数的奇偶性的性质的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图1,有一建筑物OP,为了测量它的高度,在地面上选一基线AB,设其长度为d,在A点处测得P点的仰角为α,在B点处测得P点的仰角为β.
(1)若AB=40,α=30°,β=45°,且∠AOB=30°,求建筑物的高度h;
(2)经分析若干测得的数据后,发现将基线AB调整到线段AO上(如图2),α与β之差尽量大时,可以
提高测量精确度,设调整后AB的距离为d,tanβ=$\frac{4}{d}$,建筑物的实际高度为21,试问d为何值时,β-α最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,a1=3,d=2.an=25,则n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分别是BF、CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中错误的个数是(  )

①AC∥平面BEF;
②B、C、E、F四点不可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④平面BCE与平面BEF可能垂直.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{x^2}-3,(x<0)\\ x-1,(x≥0)\end{array}$,若f(x)=2,则x=3或$-\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直角△ABC的顶点A的坐标为(-2,0),直角顶点B的坐标为(1,$\sqrt{3}$),顶点C在x轴上.
(1)求边BC所在直线的方程;
(2)求直线△ABC的斜边中线所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数lg(x)=ex的图象也相切,则满足条件的切点P的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是(  )
A.1或3B.5C.3或5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“函数f(x)=|a-3x|在[1,+∞)上为单调递增函数”是“a=3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案