精英家教网 > 高中数学 > 题目详情
3.计算$\frac{(1+i)^{2}}{1+2i}$+$\frac{(1-i)^{2}}{2-i}$.

分析 根据复数的运算法则进行化简计算即可.

解答 解:$\frac{(1+i)^{2}}{1+2i}$+$\frac{(1-i)^{2}}{2-i}$=$\frac{2i}{1+2i}$+$\frac{-2i}{2-i}$=$\frac{2i(1-2i)}{(1-2i)(1+2i)}$+$\frac{-2i(2-i)}{(2-i)(2+i)}$=$\frac{2i+4}{5}$+$\frac{2-4i}{5}$=$\frac{6-2i}{5}$.

点评 本题主要考查复数的混合计算,根据复数的运算法则是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设集合A={x|x2-3x+2>0},B={x|3x-4>0},则A∩B=(  )
A.(-2,-$\frac{4}{3}$)B.(-2,$\frac{4}{3}$)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若方程g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足不等式$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设点A,B分别是椭圆C1的左右顶点,F是椭圆C1的左焦点.若过点P(-2,0)的直线与椭圆C1相交于不同两点M,N.
①求证:∠AFM=∠BFN;②求△MFN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(1,5)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$.
(1)当λ=$\frac{1}{2}$,求|$\overrightarrow{AE}$|;
(2)求$\overrightarrow{AE}•\overrightarrow{AF}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}前n项和为Sn,a1=-$\frac{2}{3}$,且Sn+$\frac{1}{Sn}$+2=an(n≥2).
(1)计算S1,S2,S3,S4的值,猜想Sn的解析式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设回归方程$\widehat{y}$=7-3x,当变量x增加两个单位时(  )
A.y平均增加3个单位B.y平均减少3个单位
C.y平均增加6个单位D.y平均减少6个单位

查看答案和解析>>

同步练习册答案