14£®ÒÑÖªÍÖÔ²C1£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC2£ºx2=4yµÄ½¹µãÖØºÏ£¬ÀëÐÄÂÊe=$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²ClµÄ·½³Ì£»
£¨2£©ÉèPÊÇÅ×ÎïÏßC2×¼ÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýP×÷Å×ÎïÏßµÄÇÐÏßPA¡¢PB£¬A¡¢BΪÇе㣮
£¨i£©ÇóÖ¤£ºÖ±ÏßAB¾­¹ýÒ»¸ö¶¨µã£»
£¨ii£©ÈôÖ±ÏßABÓëÍÖÔ²C1½»ÓèM¡¢NÁ½µã£¬ÍÖÔ²µÄϽ¹µãΪF¡ä£¬Çó¡÷MF¡äNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏߵĽ¹µã£¬¿ÉµÃÍÖÔ²µÄc=1£¬ÔÙÓÉÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¼ÆËã¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©£¨i£©ÉèP£¨t£¬-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔËÓõ¼Êý£¬ÇóµÃÇÐÏßµÄбÂÊ£¬ÇóµÃPA£¬PBµÄ·½³Ì£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³Ì£¬¼´¿ÉµÃµ½¶¨µã£¨0£¬1£©£»
£¨ii£©ÓÉÌâÒâµÃÖ±ÏßABбÂÊ´æÔÚ£¬ÉèAB£ºy=kx+1£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬µÃµ½kµÄ¹ØÏµÊ½£¬ÔÙÓɵ¼ÊýÅжϺ¯Êýf£¨u£©=3u+$\frac{1}{u}$£¨u¡Ý1£©µÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½×î´óÖµ£®

½â´ð ½â£º£¨1£©Å×ÎïÏßC2£ºx2=4yµÄ½¹µãΪ£¨0£¬1£©£¬ÔòÍÖÔ²µÄc=1£¬
ÓÉÓÚÍÖÔ²ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{1}{2}$£¬Ôòa=2£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1£»
£¨2£©£¨i£©Ö¤Ã÷£ºÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬ÉèP£¨t£¬-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx12=4y1£¬x22=4y2£¬
y=$\frac{1}{4}$x2µÄµ¼ÊýΪy¡ä=$\frac{1}{2}$x£¬
kPA=$\frac{1}{2}$x1£¬PA£ºy-y1=$\frac{1}{2}$x1£¨x-x1£©¼´y=$\frac{1}{2}$x1x-$\frac{1}{2}$x12+y1£¬
½«x12=4y1´úÈëµÃPA£ºy=$\frac{1}{2}$x1x-y1£¬
PA¹ýµãP£¨t£¬-1£©´úÈëµÃtx1-2y1+2=0£¬
ͬÀí¿ÉµÃÓÉPB¹ýµãP£¨t£¬-1£©¿ÉµÃtx2-2y2+2=0£¬
ÔòÖ±ÏßAB£ºtx-2y+2=0£¬
¹ÊÖ±ÏßABºã¹ý¶¨µã£¨0£¬1£©£»
£¨ii£©ÓÉÌâÒâµÃÖ±ÏßABбÂÊ´æÔÚ£¬ÉèAB£ºy=kx+1£¬´úÈëÍÖÔ²·½³Ì$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1£¬
µÃ£¨3k2+4£©x2+6kx-9=0£¬Ò×µÃÅбðʽ´óÓÚ0ºã³ÉÁ¢£¬
ÉèM£¨x3£¬y3£©£¬N£¨x4£¬y4£©£¬
x3+x4=-$\frac{6k}{3{k}^{2}+4}$£¬x3x4=-$\frac{9}{3{k}^{2}+4}$£¬
¼´ÓÐS¡÷MNF'=$\frac{1}{2}$|FF'|•|x3-x4|=|x3-x4|=$\sqrt{\frac{36{k}^{2}}{£¨3{k}^{2}+4£©^{2}}+\frac{36}{3{k}^{2}+4}}$=$\frac{12k\sqrt{1+{k}^{2}}}{3{k}^{2}+4}$£¬
Áîu=$\sqrt{1+{k}^{2}}$£¨u¡Ý1£©£¬¼´ÓÐk2=u2-1£¬
S¡÷MNF'=$\frac{12u}{3{u}^{2}+1}$=$\frac{12}{3u+\frac{1}{u}}$£¬Áîf£¨u£©=3u+$\frac{1}{u}$£¨u¡Ý1£©£¬
f¡ä£¨u£©=3-$\frac{1}{{u}^{2}}$£¾0£¬Ôòf£¨u£©ÔÚ[1£¬+¡Þ£©µÝÔö£¬
Ôòµ±u=1£¬¼´k=0ʱ£¬S¡÷MNF'=È¡µÃ×î´óÖµ3£®
¡÷MF¡äNÃæ»ýµÄ×î´óֵΪ3£¬´Ëʱk=0£¬ABµÄ·½³ÌΪy=1£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߺÍÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬Í¬Ê±¿¼²éÍÖÔ²·½³ÌºÍÖ±ÏßÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Ö±Ïߺã¹ý¶¨µãµÄÇ󷨣¬×¢ÒâÔËÓú¯ÊýµÄµ¥µ÷ÐÔÇó×îÖµµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýf£¨x£©=3sin£¨2x+¦Õ£©£¨0£¼¦Õ£¼¦Ð£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºó¹ØÓÚyÖá¶Ô³Æ£¬Ôòf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨¡¡¡¡£©
A£®[-$\frac{¦Ð}{4}$+k¦Ð£¬$\frac{¦Ð}{4}$+k¦Ð]£¬k¡ÊZB£®[-$\frac{¦Ð}{6}$+k¦Ð£¬$\frac{¦Ð}{3}$+k¦Ð]£¬k¡ÊZ
C£®[-$\frac{¦Ð}{3}$+k¦Ð£¬$\frac{¦Ð}{6}$+k¦Ð]£¬k¡ÊZD£®[k¦Ð£¬$\frac{¦Ð}{2}$+k¦Ð]£¬k¡ÊZ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚËÄÀâ×¶A-BCDEÖУ¬AB=AC=$\frac{\sqrt{2}}{2}$BC£¬µãFΪ¾ØÐÎBCDEµÄ¶Ô½ÇÏߵĽ»µã£¬GÊÇAEµÄÖÐµã£¬Æ½ÃæBCDE¡ÍÆ½ÃæABC£®
£¨1£©ÇóÖ¤£ºGF¡ÍÆ½ÃæABE£»
£¨2£©ÈôBC=4£¬ËÄÀâ×¶A-BCDEµÄÌå»ýΪ16£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=alnx-ax-3£¨a¡ÊR£©£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä
£¨2£©Éèa=-1£¬ÇóÖ¤£ºµ±x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©+2£¾0
£¨3£©ÇóÖ¤£º$\frac{ln2}{2}$•$\frac{ln3}{3}$•$\frac{ln4}{4}$¡­$\frac{lnn}{n}$£¼$\frac{1}{n}$£¨n¡ÊN+ÇÒn¡Ý2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF2µÄ×ø±êΪ£¨c£¬0£©£¬Èôb=c£¬Çҵ㣨c£¬1£©ÔÚÍÖÔ²¦£ÉÏ£®
£¨1£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨2£©µ±k¡Ù0ʱ£¬ÈôÖ±Ïßl1£ºy=k£¨x+$\sqrt{2}$£©ÓëÍÖÔ²rµÄ½»µãΪA£¬B£»Ö±Ïßl2£ºy=k£¨$\sqrt{2}$x+1£©ÓëÔ²E£ºx2+y2=1µÄ½»µãΪM£¬N£¬¼Ç¡÷AOBºÍ¡÷MONµÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÆäÖÐOÎª×ø±êÔ­µã£¬Ö¤Ã÷$\frac{{S}_{1}}{{S}_{2}}$Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬AÊÇEµÄÓÒ¶¥µã£¬P¡¢QÊÇEÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½µã£¬ÇÒÖ±ÏßPAµÄбÂÊÓëÖ±ÏßQAµÄбÂÊÖ®»ýΪ-$\frac{3}{4}$£®
£¨¢ñ£©ÇóEµÄ·½³Ì£»
£¨¢ò£©¹ýEµÄÓÒ½¹µã×÷Ö±ÏßlÓëE½»ÓÚM¡¢NÁ½µã£¬Ö±ÏßMA¡¢NAÓëÖ±Ïßx=3·Ö±ð½»ÓÚC¡¢DÁ½µã£¬¼Ç¡÷ACDÓë¡÷AMNµÄÃæ»ý·Ö±ðΪS1¡¢S2£¬ÇÒS1•S2=$\frac{18}{7}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÆ½ÃæÄÚÒ»·â±ÕÇúÏßCÉϵÄÈÎÒâµãMÓëÁ½¶¨µãO£¨0£¬0£©£¬P£¨0£¬3£©µÄ¾àÀëÖ®±ÈΪ2£®
£¨1£©Çó·â±ÕÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýÇúÏßÉϵÄÒ»µãN×÷Ô²O£ºx2+y2=1µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£®ÇÐÏßNA£¬NB·Ö±ð½»xÖáÓÚD£¬EÁ½µã£®ÎÊ£º
¢ÙÈôNµÄ×ø±êΪ£¨$\sqrt{3}$£¬5£©£¬Çó|DE|µÄ³¤¶È£»
¢ÚÊÇ·ñ´æÔÚÕâÑùµãN£¬Ê¹µÃÏß¶ÎDE±»ÇúÏßCÔÚµãN´¦µÄÇÐÏ߯½·Ö£¿Èô´æÔÚ£¬Çó³öµãNµÄ×Ý×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ln£¨ax+1£©£¨x¡Ý0£¬a£¾0£©£¬g£¨x£©=$\frac{x-2}{x+2}$£®
£¨1£©ÌÖÂÛº¯Êýy=f£¨x£©-g£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èô²»µÈʽf£¨x£©¡Ýg£¨x£©+1ÔÚx¡Ê[0£¬+¡Þ£©Ê±ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©µ±a=1ʱ£¬Ö¤Ã÷£º$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+¡­+$\frac{1}{2n+1}$$£¼\frac{1}{2}$f£¨n£©£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ä³Ñ§Ð£¶ÔѧÉú½øÐÐÈýÏîÉíÌåËØÖʲâÊÔ£¬Ã¿Ïî²âÊԵijɼ¨ÓÐ3·Ö¡¢2·Ö¡¢1·Ö£¬Èô¸÷Ïî³É¼¨¾ù²»Ð¡ÓÚ2·ÖÇÐÈýÏî²âÊÔ·ÖÊýÖ®ºÍ²»Ð¡ÓÚ7·ÖµÄѧÉú£¬ÔòÆäÉíÌåËØÖʵȼ¶¼ÇΪÓÅÐ㣻ÈôÈýÏî²âÊÔ·ÖÊýÖ®ºÍСÓÚ6·Ö£¬Ôò¸ÃѧÉúÉíÌåËØÖʵȼ¶¼ÇΪ²»ºÏ¸ñ£¬Ëæ»ú³éÈ¡10ÃûѧÉúµÄ³É¼¨¼Ç¼ÈçÏÂ±í£º
 Ñ§Éú±àºÅ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
 ÈýÏî³É¼¨ 2£¬1£¬2 1£¬2£¬2 2£¬3£¬2 3£¬1£¬1 3£¬2£¬2 2£¬3£¬1 3£¬3£¬31£¬1£¬1  3£¬3£¬1 2£¬2£¬2
£¨1£©ÀûÓÃÉϱíÌṩµÄÊý¾Ý¹ÀËã¸ÃѧУѧÉúÉíÌåËØÖʵÄÓÅÐãÂÊ£»
£¨2£©´Ó±íÖÐÉíÌåËØÖʵȼ¶¼ÇΪ²»ºÏ¸ñµÄѧÉúÖÐÈÎÒâ³éÈ¡2ÈË×é³ÉС×é¼ÓÇ¿¶ÍÁ¶£¬ÇóÕâ2ÈËÈýÏî²âÊÔ×Ü·ÖÏàͬµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸