【题目】已知正项数列{an}的前n项和为Sn , 且满足4Sn﹣1=an2+2an , n∈N* .
(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项和为Tn , 证明:
≤Tn<
.
【答案】
(1)解:当n=1时,4a1=4S1=
+2a1+1,
解得a1=1.
当n≥2时,4Sn=an2+2an+1,4Sn﹣1=an﹣12+2an﹣1+1,
相减得4an=an2+2an﹣(an﹣12+2an﹣1),即an2﹣an﹣12=2(an+an﹣1),
又an>0,∴an+an﹣1≠0,则an﹣an﹣1=2,
∴数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n﹣1)×2=2n﹣1.
(2)解:bn=
=
=
,
∴数列{bn}的前n项和:
Tn= ![]()
=
,
(Tn)min=T1=
=
,
∴
≤Tn<
.
【解析】(1)通过4Sn﹣1=an2+2an , 令n=1可得首项,当n≥2时,利用4an=an2+2an﹣(an﹣12+2an﹣1)可得公差,进而可得结论;(2)由bn=
=
=
,利用裂项求和法能证明
≤Tn<
.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系
;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】若关于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的两个实数根x1 , x2满足x1≤0≤x2≤1,则a2+b2+4a的最小值和最大值分别为( )
A.
和5+4 ![]()
B.﹣
和5+4 ![]()
C.﹣
和12
D.﹣
和15﹣4 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R,
,则命题?P:?x∈R, ![]()
C.设
是两个非零向量,则“
是“
夹角为钝角”的必要不充分条件
D.若命题P:
,则¬P: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°. ![]()
(1)求证:AC⊥平面BDE;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b为实数),设
,
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com