3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+4cos¦È}\\{y=2+4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È+$\frac{3¦Ð}{4}$£©=7£®
£¨1£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©A£¬B·Ö±ðÊÇÔ²CºÍÖ±ÏßlÉϵ͝µã£¬Çó|AB|µÄ×îСֵ£®

·ÖÎö £¨1£©ÀûÓúÍÓë²î¹«Ê½´ò¿ª£¬¸ù¾Ý¦Ñcos¦È=x£¬¦Ñsin¦È=y¿ÉµÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¸ù¾ÝÔ²CµÄ²ÎÊý·½³Ì£¬Çó³öÔ²ÐĺͰ뾶£¬|AB|µÄ×îСֵΪԲÐĵ½Ö±ÏߵľàÀëd-r¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È+$\frac{3¦Ð}{4}$£©=7£®
ÄÇô£º$\sqrt{2}¦Ñsin¦Ècos\frac{3¦Ð}{4}+\sqrt{2}¦Ñcos¦Èsin\frac{3¦Ð}{4}=7$£¬
¸ù¾Ý¦Ñcos¦È=x£¬¦Ñsin¦È=y¿ÉµÃ£º-y+x=7£®
¼´Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y=7£®
£¨2£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+4cos¦È}\\{y=2+4sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆäÔ²ÐÄΪ£¨-1£¬2£©£¬°ë¾¶r=4£®
ÄÇô£ºÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|-1+2-7|}{\sqrt{2}}=3\sqrt{2}$£®
¡àAB|µÄ×îСֵΪԲÐĵ½Ö±ÏߵľàÀëd-r£¬¼´$|AB{|}_{min}=d-r=3\sqrt{2}-4$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì¡¢ÆÕͨ·½³ÌµÄ»¥»¯ÒÔ¼°Ó¦Ó㬿¼²éÁ˵㵽ֱÏߵľàÀ빫ʽ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬F1£¬F2ΪËüµÄ×ó¡¢ÓÒ½¹µã£¬PΪÍÖÔ²ÉÏÒ»µã£¬ÒÑÖª¡ÏF1PF2=60¡ã£¬S${\;}_{¡÷{F}_{1}P{F}_{2}}$=$\sqrt{3}$£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÒÑÖªT£¨-4£¬0£©£¬¹ýTµÄÖ±ÏßÓëÍÖÔ²½»ÓÚM¡¢NÁ½µã£¬Çó¡÷MNF1Ãæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª£¨Èçͼ£©ÎªÄ³ËÄÀâ×¶µÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåÌå»ýΪ$\frac{8}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª$\overrightarrow{i}$£¬$\overrightarrow{j}$£¬$\overrightarrow{k}$ÊÇÈý¸ö²»¹²ÃæÏòÁ¿£¬ÒÑÖªÏòÁ¿$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{i}$-$\overrightarrow{j}$+$\overrightarrow{k}$£¬$\overrightarrow{b}$=5$\overrightarrow{i}$-2$\overrightarrow{j}$-$\overrightarrow{k}$£¬Ôò4$\overrightarrow{a}$-3$\overrightarrow{b}$=-13$\overrightarrow{i}$+2$\overrightarrow{j}$+7$\overrightarrow{k}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Âú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©²»ºãΪ0£»¢Ú¶ÔÈÎÒâµÄÕýʵÊýxºÍÈÎÒâµÄʵÊýy¶¼ÓÐf£¨xy£©=y•f£¨x£©£®
£¨1£©ÇóÖ¤£º·½³Ìf£¨x£©=0ÓÐÇÒ½öÓÐÒ»¸öʵÊý¸ù£»
£¨2£©ÉèaΪ´óÓÚ1µÄ³£Êý£¬ÇÒf£¨a£©£¾0£¬ÊÔÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢ÓèÒÔÖ¤Ã÷£»
£¨3£©Èôa£¾b£¾c£¾1£¬ÇÒ2b=a+c£¬ÇóÖ¤£ºf£¨a£©•f£¨c£©£¼[f£¨b£©]2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{ax+4y=a+2}\\{x+ay=a}\end{array}\right.$Î޽⣬Ôòa=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÊýÁÐ{an}Âú×ã${a_{n+1}}+{a_n}=£¨n+1£©•cos\frac{n¦Ð}{2}£¨n¡Ý2£¬n¡Ê{N^*}£©$£¬SnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôS2017+m=1010£¬ÇÒa1•m£¾0£¬Ôò$\frac{1}{a_1}+\frac{1}{m}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{2}$C£®$2\sqrt{2}$D£®$2+\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Éèf£¨x£©=|x+1|-|x-4|£®
£¨1£©Èôf£¨x£©¡Ü-m2+6mºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©ÉèmµÄ×î´óֵΪm0£¬a£¬b£¬c¾ùΪÕýʵÊý£¬µ±3a+4b+5c=m0ʱ£¬Çóa2+b2+c2µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª$\overrightarrow{a}$=£¨2$\sqrt{3}$sinx£¬sinx+cosx£©£¬$\overrightarrow{b}$=£¨cosx£¬sinx-cosx£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒb2+a2-c2=ab£¬Èôf£¨A£©-m£¾0ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸