精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是数列{an}的前n项和,若S2017+m=1010,且a1•m>0,则$\frac{1}{a_1}+\frac{1}{m}$的最小值为(  )
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

分析 由S2017-a1=(a2+a3)+(a4+a5)+…+(a2016+a2017),结合余弦函数值求和,再由S2017+m=1010,可得a1+m=2,由a1•m>0,可得a1>0,m>0,运用乘1法和基本不等式即可得到所求最小值.

解答 解:数列{an}满足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,
可得a2+a3=3cosπ=-3,a4+a5=5cos2π=5,a6+a7=7cos3π=-7,
…,a2016+a2017=2017cos1008π=2017,
则S2017-a1=(a2+a3)+(a4+a5)+…+(a2016+a2017)=-3+5-7+9-…+2017=1008,
又S2017+m=1010,
所以a1+m=2,
由a1•m>0,可得a1>0,m>0,
则$\frac{1}{a_1}+\frac{1}{m}$=$\frac{1}{2}$(a1+m)($\frac{1}{a_1}+\frac{1}{m}$)=$\frac{1}{2}$(2+$\frac{m}{{a}_{1}}$+$\frac{{a}_{1}}{m}$)≥$\frac{1}{2}$(2+2$\sqrt{\frac{m}{{a}_{1}}•\frac{{a}_{1}}{m}}$)=2.
当且仅当a1=m=1时,取得最小值2.
故选:A.

点评 本题考查数列与三角函数的结合,注意运用整体思想和转化思想,考查最值的求法,注意运用乘1法和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的顶点都在球O的球面上,则球O的表面积为(  )
A.25πB.50πC.75πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图,则该几何体的体积是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-1+4cosθ}\\{y=2+4sinθ}\end{array}\right.$(θ为参数),以原点O为极点,以x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}$ρsin(θ+$\frac{3π}{4}$)=7.
(1)求直线l的直角坐标方程;
(2)A,B分别是圆C和直线l上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.质地均匀的正四面体表面分别印有0,1,2,3四个数字,某同学随机的抛掷次正四面体2次,若正四面体与地面重合的表面数字分别记为m,n,且两次结果相互独立,互不影响.记m2+n2≤4为事件A,则事件A发生的概率为(  )
A.$\frac{3}{8}$B.$\frac{3}{16}$C.$\frac{π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,左右焦点为F1(-c,0),F2(c,0),且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C方程;
(II)圆D:${({x+\frac{{4\sqrt{3}}}{7}})^2}+{({y-\frac{{3\sqrt{3}}}{7}})^2}={r^2}({r>0})$与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上函数f(x)=$\left\{\begin{array}{l}{x^2},x∈[{0,1})\\-{x^2},x∈[{-1,0})\end{array}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,则方程f(x)=g(x)在区间[-3,7]上的所有实根之和为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{32}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}\right.$,则z=2x-y的最大值为2.

查看答案和解析>>

同步练习册答案