精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,左右焦点为F1(-c,0),F2(c,0),且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C方程;
(II)圆D:${({x+\frac{{4\sqrt{3}}}{7}})^2}+{({y-\frac{{3\sqrt{3}}}{7}})^2}={r^2}({r>0})$与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

分析 (I)将点代入椭圆方程,由函数的对称性求得a=2c,即可求得椭圆的标准方程;
(II)由圆D,求得圆心坐标,利用点差法,求得直线AB的方程,代入椭圆方程,求得A,B点坐标,求得F1R的斜率的取值范围,则设F1R的方程y=k(x+1),代入椭圆方程,由韦达定理及$|{P{F_1}}|=\sqrt{1+{k^2}}|{{x_3}+1}|$,$|{Q{F_1}}|=\sqrt{1+{k^2}}|{{x_4}+1}|$,即可求得|PF1||QF1|的取值范围.

解答 解:(Ⅰ)∵椭圆C过点$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,
∴$\frac{3}{a^2}+\frac{3}{{4{b^2}}}=1$,①
∵椭圆C关于直线x=c对称的图形过坐标原点,∴a=2c,
∵a2=b2+c2,∴${b^2}=\frac{3}{4}{a^2}$,②
由①②得a2=4,b2=3,
∴椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.…(4分)
(Ⅱ)因为AB为圆D的直径,所以点D:$(-\frac{{4\sqrt{3}}}{7},\frac{{3\sqrt{3}}}{7})$为线段AB的中点,
设A(x1,y1),B(x2,y2),则,$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{{8\sqrt{3}}}{7}\\{y_1}+{y_2}=\frac{{6\sqrt{3}}}{7}\end{array}\right.$,又$\begin{array}{l}\left\{\begin{array}{l}\frac{{{x_1}^2}}{4}+\frac{{{y_1}^2}}{3}=1\\ \frac{{{x_2}^2}}{4}+\frac{{{y_2}^2}}{3}=1\end{array}\right.\end{array}$,
所以$\frac{{({x_1}+{x_2})({x_1}-{x_2})}}{4}+\frac{{({y_1}+{y_2})({y_1}-{y_2})}}{3}=0$,则(x1-x2)-(y1-y2)=0,故${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=1$,
则直线AB的方程为$y-\frac{{3\sqrt{3}}}{7}=x+\frac{{4\sqrt{3}}}{7}$,即$y=x+\sqrt{3}$,…(7分)
代入椭圆C的方程并整理得$7{x^2}+8\sqrt{3}x=0$,则${x_1}=-\frac{{8\sqrt{3}}}{7},{x_2}=0$,
故直线F1R的斜率$k∈[{\sqrt{3},+∞})$.
设F1R:y=k(x+1),由$\left\{\begin{array}{l}y=k(x+1)\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$,得(3+4k2)x2+8k2x+4k2-12=0,
设P(x3,y3),Q(x4,y4),则有${x_3}+{x_4}=\frac{{-8{k^2}}}{{3+4{k^2}}}$,${x_3}{x_4}=\frac{{4{k^2}-12}}{{3+4{k^2}}}$.
又$|{P{F_1}}|=\sqrt{1+{k^2}}|{{x_3}+1}|$,$|{Q{F_1}}|=\sqrt{1+{k^2}}|{{x_4}+1}|$,…(10分)
所以|PF1||QF1|=(1+k2)|x3x4+(x3+x4)+1|=$(1+{k^2})\frac{9}{{3+4{k^2}}}=\frac{9}{4}(1+\frac{1}{{3+4{k^2}}})$,
因为$k≥\sqrt{3}$,所以$\frac{9}{4}<\frac{9}{4}(1+\frac{1}{{3+4{k^2}}})≤\frac{12}{5}$,
即|PF1||QF1|的取值范围是$({\frac{9}{4},\frac{12}{5}}]$.…(13分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及弦长公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数满足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,则f′(1)=(  )
A.2B.eC.3D.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$是三个不共面向量,已知向量$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{i}$-$\overrightarrow{j}$+$\overrightarrow{k}$,$\overrightarrow{b}$=5$\overrightarrow{i}$-2$\overrightarrow{j}$-$\overrightarrow{k}$,则4$\overrightarrow{a}$-3$\overrightarrow{b}$=-13$\overrightarrow{i}$+2$\overrightarrow{j}$+7$\overrightarrow{k}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知关于x,y的二元一次方程组$\left\{\begin{array}{l}{ax+4y=a+2}\\{x+ay=a}\end{array}\right.$无解,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是数列{an}的前n项和,若S2017+m=1010,且a1•m>0,则$\frac{1}{a_1}+\frac{1}{m}$的最小值为(  )
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
  愿意 不愿意 总计
 男生   
 女生   
 总计   
(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为$\frac{1}{2}$,记甲通过的关数为X,求X的分布列和数学期望.
参考公式与数据:
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=|x+1|-|x-4|.
(1)若f(x)≤-m2+6m恒成立,求实数m的取值范围;
(2)设m的最大值为m0,a,b,c均为正实数,当3a+4b+5c=m0时,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=exlnx-1,g(x)=$\frac{x}{{e}^{x}}$.
(Ⅰ)若g(x)=a在(0,2)上有两个不等实根,求实数a的取值范围;
(Ⅱ)证明:f(x)+$\frac{2}{eg(x)}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,m),$\overrightarrow{c}$=(7,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$•$\overrightarrow{c}$=(  )
A.8B.10C.15D.18

查看答案和解析>>

同步练习册答案