精英家教网 > 高中数学 > 题目详情
15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A、B,上顶点为C,若△ABC是底角为30°的等腰三角形,则$\frac{c}{a}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

分析 利用已知条件列出a,b关系式,最后求解离心率即可.

解答 解:由题意得∠CAB=30°,则tan∠CAB=$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$,可得离心率为e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}-{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{6}}{3}$,
故选:D.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知各项均为正数的数列{an}满足(2an+1-an)(an+1an-1)=0(n∈N*),且a1=a10,则首项a1所有可能取值中最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\sqrt{x}$-$\frac{1}{2x}$)9展开式中的常数项是-$\frac{21}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的面积为15$\sqrt{3}$,$\overrightarrow{BD}$+$\overrightarrow{CD}$=0,∠BAC=120°
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(2)若AB=10,求AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在边长为4的长方形ABCD中,动圆Q的半径为1,圆心Q在线段BC(含端点)上运动,P是圆Q上及内部的动点,设向量$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n为实数),则m+n的取值范围是(  )
A.$[{1-\frac{{\sqrt{2}}}{4},2+\frac{{\sqrt{2}}}{4}}]$B.$[{\frac{3}{4},2+\frac{{\sqrt{2}}}{4}}]$C.$[{\frac{3}{4},\frac{9}{4}}]$D.$[{1-\frac{{\sqrt{2}}}{4},\frac{9}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.焦距为2c,且c,$\sqrt{2}$,2成等比数列.
(I)求椭圆C的标准方程;
(Ⅱ)点B坐标为(0,$\sqrt{2}$),问是否存在过点B的直线1交椭圆C于M,N两点,且满足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$(O为坐标原点)?若存在,求出此时直线l的方程.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.记min{a,b,c}为a,b,c中的最小值,若x,y为任意正实数,则M=min{2x,$\frac{1}{y}$,y+$\frac{1}{x}$}的最大值为(  )
A.1+$\sqrt{2}$B.2C.2+$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个必要不充分条件是(  )
A.0<m<1B.-4<m<0C.m<1D.-3<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A点处,乙船在中间B点处,丙船在最后面的C点处,且BC:AB=3:1.一架无人机在空中的P点处对它们进行数据测量,在同一时刻测得∠APB=30°,∠BPC=90°.(船只与无人机的大小及其它因素忽略不计)
(1)求此时无人机到甲、丙两船的距离之比;
(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)

查看答案和解析>>

同步练习册答案