精英家教网 > 高中数学 > 题目详情
8.已知圆心为(3,4)的圆N被直线x=1截得的弦长为2$\sqrt{5}$.
(1)求圆N的方程;
(2)点B(3,-2)与点C关于直线x=-1对称,求以C为圆心且与圆N外切的圆的方程.

分析 (1)由已知求出圆心N到直线x=1的距离,由垂径定理求得圆的半径,则圆的方程可求;
(2)求出B关于直线x=-1的对称点,由圆心距与半径的关系求出圆C的半径,则圆C的方程可求.

解答 解:(1)由题意得圆心N(3,4)到直线x=1的距离等于3-1=2.
∵圆N被直线x=1截得的弦长为2$\sqrt{5}$,
∴圆N的半径r=$\sqrt{(\sqrt{5})^{2}+{2}^{2}}=3$.
∴圆N的方程为(x-3)2+(y-4)2=9;
(2)∵点B(3,-2)与点C关于直线x=-1对称,
∴点C的坐标为(-5,-2),
设所求圆的方程为(x+5)2+(y+2)2=r2(r>0),
∵圆C与圆N外切,
∴r+3=$\sqrt{(3+5)^{2}+(4+2)^{2}}=10$,得r=7.
∴圆C的方程为(x+5)2+(y+2)2=49.

点评 本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知x>y>0,则(  )
A.$\frac{1}{x}-\frac{1}{y}>0$B.sinx-siny>0C.${({\frac{1}{2}})^x}-{({\frac{1}{2}})^y}<0$D.lnx+lny>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,若m=8,则输出的结果是(  )
A.2B.$\frac{7}{3}$C.3D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m、n是两条不重合的直线,α、β是两个不重合的平面,下列命题中正确的是(  )
A.若m∥n,m∥α,则n∥αB.若m、n?α,m∥β,n∥β,则α∥β
C.若m⊥α,n∥α,则m⊥nD.若m⊥α,α⊥β,m∥n,则n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长方体ABCD-A1B1C1D1的十二条棱中,与面对角线AC垂直且异面的棱的条数是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F为双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1左焦点,过抛物线y2=20x的焦点的直线交双曲线C的右支于P,Q两点,若线段PQ的长等于双曲线C虚轴长的3倍,则△PQF的周长为(  )
A.40B.42C.44D.52

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a=$\sqrt{7}$,b=2,A=60°,则c=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数p(x)=lnx+x-4,q(x)=axex(a∈R).
(Ⅰ)若a=e,设f(x)=p(x)-q(x),试证明f′(x)存在唯一零点x0∈(0,$\frac{1}{e}$),并求f(x)的最大值;
(Ⅱ)若关于x的不等式|p(x)|>q(x)的解集中有且只有两个整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足a5=8,a7=12.
(1)求数列{an}的通项公式;
(2)设等比数列{bn}的各项均为正数,其前n项和为Tn,若b3=a3,T2=3,求Tn

查看答案和解析>>

同步练习册答案