精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)连接AC1交A1C于点F,由三角形中位线定理得BC1∥DF,由此能证明BC1∥平面A1CD.
(Ⅱ)以C为坐标原点,
CA
的方向为x轴正方向,
CB
的方向为y轴正方向,
CC1
的方向为z轴正方向,建立空间直角坐标系C-xyz.分别求出平面A1CD的法向量和平面A1CE的法向量,利用向量法能求出二面角D-A1C-E的正弦值.
解答: (Ⅰ)证明:连接AC1交A1C于点F,
则F为AC1的中点.又D是AB的中点,
连接DF,则BC1∥DF.
因为DF?平面A1CD,BC1?平面A1CD,
所以BC1∥平面A1CD.
(Ⅱ)解:由AC=CB=
2
2
AB,得AC⊥BC.
以C为坐标原点,
CA
的方向为x轴正方向,
CB
的方向为y轴正方向,
CC1
的方向为z轴正方向,建立如图所示的空间直角坐标系C-xyz.
设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
CD
=(1,1,0),
CE
=(0,2,1),
CA1
=(2,0,2).
n
=(x1,y1,z1)是平面A1CD的法向量,
n
CD
=x1+y1=0
n
CA1
=2x1+2z1=0
,取x1=1,得
n
=(1,-1,-1).
同理,设
m
=(x2,y2,z2)是平面A1CE的法向量,
m
CE
=2y2+z2=0
m
CA1
=2x2+2z2=0
,取x2=2,得
m
=(2,1,-2).
从而cos<
n
m
>=
m
n
|
m
|•|
n
|
=
3
3
,故sin<
n
m
>=
6
3

即二面角D-A1C-E的正弦值为
6
3
点评:本题主要考查直线与平面、平面与平面之间的平行、垂直等位置关系,考查线面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+cosx,记f1(x)=f′(x),f2(x)=f1′(x),…,fn(x)=fn-1′(x)(n∈N*且n≥2),试计算f1(x),f2(x),f3(x),f4(x),并猜想f2010(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,BC⊥CD=4,已知AD=5,BC=4,CD=
3
,点E,F分别在AB,AD上,且EF⊥AB,沿EF将△AEF折起到△A′EF的位置,使A′E⊥EB,连接A′B,A′C,A′D
(1)求证:A′E⊥平面BCDFE;
(2)试确定点E的位置,使平面A′EF与平面A′BC所成的二面角的余弦值为
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
满足|
a
|=|
b
|=|
a
+
b
|=1,则
a
b
的值为
 
a
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c>0且a(a+b+c)+bc=4-2
3
,则2a+b+c的最小值为(  )
A、
3
-1
B、
3
+1
C、2
3
-2
D、2
3
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,侧面PAD⊥底面ABCD,侧面PAD为等边三角形,底面ABCD为棱形且∠DAB=
π
3

(Ⅰ)求证:PB⊥AD;
(Ⅱ)求平面PAB与平面PCD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x,4),
b
=(-1,2),若
a
b
的夹角为锐角,则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
均为单位向量,它们的夹角为600,实数x,y满足|x
a
+y
b
|=
3
,那么x+2y的最大值为(  )
A、3
B、
3
C、2
3
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
e1
e2
是夹角为
3
的单位向量,若
a
=3
e1
b
=
e1
-
e2
,则向量
b
a
方向的投影为(  )
A、
3
2
B、
1
2
C、-
1
2
D、1

查看答案和解析>>

同步练习册答案