精英家教网 > 高中数学 > 题目详情
设向量
e1
e2
是夹角为
3
的单位向量,若
a
=3
e1
b
=
e1
-
e2
,则向量
b
a
方向的投影为(  )
A、
3
2
B、
1
2
C、-
1
2
D、1
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用数量积的定义及其运算性质、投影计算公式即可得出.
解答: 解:∵向量
e1
e2
是夹角为
3
的单位向量,
|
e1
|=|
e2
|
=1,
e1
e2
=1×1×cos
3
=-
1
2

|
a
|
=|3
e1
|
=3,
a
b
=3
e1
•(
e1
-
e2
)
=3
e1
2
-3
e1
e2
=3-3×(-
1
2
)
=
9
2

∴向量
b
a
方向的投影为=
b
a
|
a
|
=
9
2
3
=
3
2

故选:A.
点评:本题考查了数量积的定义及其运算性质、投影计算公式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是(  )
A、若|
a
|=|
b
|,则
a
=
b
a
=-
b
B、若
a
b
共线,则存在唯一实数λ,使
a
b
C、若(
a
-
b
2+(
b
-
c
2=0,则
a
=
b
=
c
D、若
a
b
=0,则
a
2
b
2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是(  )
A、45B、60C、75D、90

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin
x
4
3
),
n
=(cos
x
4
,cos2
x
4
),f(x)=
m
n

(I)若f(x)=0,求sin(
π
6
+x)值;
(II)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的最大值及相应的角A.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)唯一的一个零点同时在区间(2,16),(2,8),(2,4)内,那么下列命题中正确的是(  )
A、f(x)在区间(2,3)内有零点
B、f(x)在区间(2,3)或(3,4)内有零点
C、f(x)在区间(3,16)内无零点
D、f(x)在区间(4,16)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤x
x+y≥2
2x+y≥6
,则z=3x+2y的取值范围为(  )
A、(-∞,10]
B、[8,+∞)
C、[5,10]
D、[8,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z均为正数,且x+y+z=1,求证:
yz
x
+
xz
y
+
xy
z
≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

某物流公司送货员从公司A处准备开车送货到某单位B处,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示(例如A→C→D算作两个路段:路段AC发生堵车事件的概率为
1
6
,路段CD发生堵车事件的概率为
1
10
…)
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车的次数为随机变量ξ,求ξ的数学期望Eξ.

查看答案和解析>>

同步练习册答案