分析 (1)由题意可得Sn=$\frac{1}{2}$n2+$\frac{11}{2}$n,解可求出通项可求an;由bn+2-2bn+1+bn=0⇒bn+2-bn+1=bn+1-bn,从而可得数列bn为等差数列,结合题中所给条件可求公差d,首项b1,进一步可求数列的通项.
(2)由(I)可知数列$\left\{{({a_n}-5)•{2^{a_n}}}\right\}$分别为等差、等比数列,对数列求和用错位相减,
(3)当n∈N*,f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$=$\left\{\begin{array}{l}n+5,n为奇数\\ 3n+2,n为偶数\end{array}$,分类讨论即可求出m的值.
解答 解:(1)∵点(n,$\frac{Sn}{n}$)在直线y=$\frac{1}{2}$x+$\frac{11}{2}$上,
∴$\frac{Sn}{n}$=$\frac{1}{2}$n+$\frac{11}{2}$,
即Sn=$\frac{1}{2}$n2+$\frac{11}{2}$n,
所以a1=6,
当n≥2时,an=Sn-Sn-1=n+5.
且a1=6也适合,
所以an=n+5
∵bn+2-2bn+1+bn=0(n∈N*),
∴bn+2-bn+1=bn+1-bn=…=b2-b1.
∴数列{bn}是等差数列,
∵b3=11,它的前9项和为153,
设公差为d,则b1+2d=11,9b1+$\frac{9×8}{2}$×d=153,
解得b1=5,d=3.
∴bn=3n+2,
(2)令${c_n}=({a_n}-5)•{2^{a_n}}=n•{2^{n+5}}=32n•{2^n}$,
∴${T_n}=32(1×{2^1}+2×{2^2}+3×{2^3}+…+n•{2^n})$,
$2{T_n}=32(1×{2^2}+2×{2^3}+3×{2^4}+…+n•{2^{n+1}})$,
则$-{T_n}=32(2+{2^2}+{2^3}+…+{2^n}-n•{2^{n+1}})$,
∴${T_n}=32(n-1){2^{n+1}}+64$
(3)当n∈N*,f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$=$\left\{\begin{array}{l}n+5,n为奇数\\ 3n+2,n为偶数\end{array}$
当m为奇数时,m+15为偶数,则有3(m+15)+2=5(m+5),解得m=11
当m为偶数时,m+15为奇数.若f(m+15)=5f(m)成立,m+15+5=5(3m+2),此时不成立
所以当m=11时,f(m+15)=5f(m).
点评 本题主要考查了等差数列及等比数列的通项公式、定义,属于对基本概念、基本公式的考查,还考查了求和方法的乘公比错位相减求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
| 频数(个) | 5 | 10 | 20 | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{16}$或$\frac{11}{16}$ | B. | $\frac{5}{16}$或$\frac{7}{16}$ | C. | $\frac{5}{16}$或$\frac{15}{16}$ | D. | $\frac{3}{16}$或$\frac{7}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com