精英家教网 > 高中数学 > 题目详情

证明函数f(x)=x+在(0,1)上为减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断并利用定义证明f(x)=在(-∞,0)上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(附加题)本小题满分10分
已知是定义在上单调函数,对任意实数有:时,.
(1)证明:
(2)证明:当时,
(3)当时,求使对任意实数恒成立的参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(每小题6分,共12分)求下列函数的定义域:
(1) 
(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(16分)已知函数是定义在上的奇函数,且当时,
(1)当时,求函数的解析式;
(2)若函数为单调递减函数;
①直接写出的范围(不必证明);
②若对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数f(x)=.
(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f+f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
(1)证明:函数上是减函数,在[,+∞)上是增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(1)二次函数满足:为偶函数且,求的解析式;
(2)若函数定义域为,求取值范围。
(3)若函数值域为,求取值范围。
(4)若函数上单调递减,求取值范围。

查看答案和解析>>

同步练习册答案